Applications Across Land, Air, and Sea
Challenges & Solutions
for the 21st Century
Volume 7, Issue No. 4
1
Table of Contents Directed Energy
3 Leading Edge Directed-Energy RDT&E
Captain Michael H. Smith
4 Directed-Energy Topics in This Issue
Mr. Dale Sisson
Past, Present, and Future
6 Naval Directed-Energy Weapons —
No Longer a Future Weapon Concept
David C. Stoudt
12 Historical Overview of Directed-Energy Work at Dahlgren
Stuart Moran
26 History of Laser Weapon Research
Melissa Olson
36 Laser Weapon System (LaWS) Adjunct to the Close-In
Weapon System (CIWS)
Robin Staton and Robert Pawlak
RDT&E, Acquisition, and Warfare Management
44 The Acquisition Challenge Associated With Directed-Energy RDT&E
Mike Kotzian
Technology, Modeling, and Assessment
50 The Basics of Electric Weapons and Pulsed-Power Technologies
Stuart Moran
58 Solid Modeling of Directed-Energy Systems
Joseph F. Sharrow
64 A Fundamental Key to Next-Generation Directed-Energy Systems
Directed Energy Division, Electromagnetic and Sensor Systems Department
70 Active Denial Array
Randy Woods and Matthew Ketner
74 Directed Energy in the Military Environment
LT Leedjia Svec, Jeremy Beer, and Dave Freeman
High-Power Microwave
78 Directed Energy Using High-Power Microwave Technology
Jacob Walker and Matthew McQuage
High-Energy Laser
82 Laser Counter Rocket, Artillery, and Mortar (C-RAM) Efforts
Michael Libeau
Nonlethal Capabilities
86 Multifrequency Radio-Frequency (RF) Vehicle Stopper
Stephen A. Merryman
92 High-Power Electrical Vehicle-Stopping Systems
Jordan Chaparro and Melanie Everton
96 Nonlethal Small-Vessel Stopping With High-Power
Microwave Technology
Jacob Walker
Volume 7, Issue No. 4
2
Naval Surface Warfare Center, Dahlgren Division (NSWCDD)
Captain Michael H. Smith, Commander
Carl R. Siel, Jr., Technical Director
David C. Stoudt, Distinguished Engineer for Directed Energy (ST) and
NAVSEA Technical Warrant for Directed Energy and Electric Weapon Systems
Janice Miller, Corporate Communications Director (Acting)
Steve Zehring, Managing Editor
Margie Stevens, Production Coordinator
Patrice Waits, Editor & Layout
Clement Bryant, Layout Design & Graphic Artist
Kellie Yeatman, Graphic Artist
Trey Hamlet, Graphic Artist/3-D Modeling
Electromagnetic & Sensor Systems
Dale Sisson, Head, Q Department
Brandy Anderson, Graphic Artist/Cover Design
NSWCDD
Jordan Chaparro
Melanie Everton
Matthew Ketner
Michael Libeau
Matthew McQuage
Stephen A. Merryman
Stuart Moran
Melissa Olson
Robert Pawlak
Joseph F. Sharrow
Robin Staton
Jacob Walker
Randy Woods
Defense Acquisition University
Mike Kotzian
Naval Medical Research Unit – San Antonio
Jeremy Beer
Dave Freeman
LT Leedjia Svec
The Leading Edge magazine is produced by the Naval Surface Warfare Center, Dahlgren,
Virginia. The purpose of the publication is to showcase technical excellence across the Warfare
Centers and promote a broader awareness of the breadth and depth of knowledge and support
available to the Navy and DoD.
Address all correspondence to Corporate Communications, C6
Email: dlgr_nswc_c6@navy.mil; or write to
Commander
Naval Surface Warfare Center, Dahlgren Division
Corporate Communications, C6
6149 Welsh Road, Suite 239
Dahlgren, VA 22448-5130
NSWCDD/MP-09/34
Approved for public release; distribution is unlimited.
33
Introduction
Leading Edge Directed-Energy RDT&E
Dahlgren first launched research and development efforts devoted
to harnessing the power of electromagnetic energy over
40 years ago. From early work with voltage multipliers and pulsepowered
technology, to today’s high-energy lasers and high-power
microwave technologies, the Naval Surface Warfare Center,
Dahlgren Division (NSWCDD) has led, and continues to lead,
cutting-edge directed-energy research, development, testing, and
evaluation. Our commitment in this area only grows stronger—evidenced by our chartering of the Directed Energy Warfare Office
(DEWO)—n order to provide increased focus on warfighting
applications of these technologies.
Today’s military forces face a wide array of challenges in diverse
operating environments around the world. Directed energy
offers unique and flexible options to address today’s challenges,
as traditional kinetic weapons are often of limited value in peacekeeping
missions and in urban environments, where restricted
rules of engagement typify the norm. Kinetic weapons can also be
more costly or ineffective to employ against asymmetric threats.
The Chief of Naval Operations (CNO) recently placed added
emphasis on directed energy and on expanding the range of directed-
energy capabilities. In response, scientists and engineers at
NSWCDD are actively developing prototype systems in a number
of areas that you will read about in this issue—reas that have
been successfully demonstrated and tested in our Navy laboratories
and ranges.
In this issue of The Leading Edge magazine, you will trace the
rich history of directed-energy work at Dahlgren, gain insight into
directed-energy weapons already fielded or being readied for the
field, and learn about prototypes that show real promise for providing
incredibly effective offensive and defensive directed-energy
solutions. For example, scientists and engineers at NSWCDD
are leading the way toward realizing small, lightweight radio frequency
(RF) transmitters using high-power, solid-state switching
amplifiers for the development of counter-improvised explosive
device detection and neutralization systems. You will also learn
about diverse applications of directed-energy technology—such
as research and testing of laser glare devices and laser eye protection—
and have the opportunity to gain a better understanding of
the Department of Defense (DoD) acquisition framework and the
challenge of maintaining cost and schedule estimates while delivering
weapons systems that are critical to the warfighter.
From lasers to high-power electrical vehicle-stopping systems,
I am sure you will be fascinated and, along with me, be impressed
with the advancements our scientists, engineers, and technical
staff are achieving in the directed-energy arena to support of our
men and women in uniform.
Captain Michael H. Smith, USN
Commander, NSWCDD
4
Welcome to our Directed Energy issue of the Leading Edge
magazine. This issue represents the third in a trilogy of issues
covering the truly fascinating and incredibly challenging area
of naval warfare in the operational electromagnetic environment.
In our first issue, we covered the full range of operational
and readiness implications when operating in the electromagnetic
environment. Then, in our second issue, we highlighted
the complexities and dynamics of providing relevant and effective
sensors and radars to our warfighters. Now, we focus on
directed energy and relate how the Naval Sea Systems Command
(NAVSEA) Warfare Centers, and the Naval Surface Warfare
Center, Dahlgren Division’s (NSWCDD’s), in particular,
are working on state-of-the-art directed-energy weapons capabilities
for the warfighter.
In this issue, we first look back to the early years, decades
ago, when directed-energy weapons research began. We examine
the history of directed energy, and we cover significant discoveries
and achievements made by NAVSEA Warfare Center
scientists and engineers, and others in the scientific community.
We then relate information about several of our current directed-
energy initiatives, and about how we’re working hard to
solve some of the most complex technical challenges associated
with directed-energy weapons. We highlight how others in
the Navy, such as the Naval Medical Research Unit in San Antonio,
Texas, are also conducting research into directed energy
and how our forces can better protect themselves from the
effects of directed energy. We show how directed energy can
be employed in a variety of offensive and defensive, lethal and
nonlethal situations. We explain how directed-energy weapons
work and how they can be employed in various environments
against a wide range of situations. Lastly, we look forward as we
provide technical and strategic leadership for the efficient and
effective development, acquisition, and fielding of directed-energy
systems for the warfighter.
So, if you want to learn about what the NAVSEA Warfare
Centers and others in the Navy are doing in the area of directedenergy
weapons, look no further than this issue of the Leading
Edge magazine. I’m confident that you will be impressed by the
progress made in this most important technology field.
Dale Sisson
Head, Electromagnetic and
Sensor Systems Department
NSWCDD Dahlgren, Virginia
Directed-Energy Topics in This Issue
5
6
Directed Energy
Past, Present, and Future
Naval Directed-Energy Weapons —
No Longer A Future Weapon Concept
By David C. Stoudt
Directed-energy weapon (DEW) technologies typically take the form of highenergy
lasers (HELs), high-power microwaves (HPMs), and charged-particle beams.
This article focuses on the first two technology areas, as they have reached the point of
being ready for operational testing and evaluation, and in some cases, operational use
on the battlefield. DEWs have been popularized in science-fiction writings for over a
hundred years. The Department of Defense (DoD) has been investing in their development
since the 1970s. This article will not go into technical depth regarding the various
directed-energy (DE)-related efforts currently underway in the Navy, but rather, it will
overview DE areas under development and relate recent Navy leadership activity. Other
articles in this issue of The Leading Edge magazine will provide the reader with much
greater technical and programmatic details on various DE efforts.
High-Energy Laser Weapons
HEL weapon systems have been envisioned for a great many years, to include being
referred to as Martian “Heat Ray” weapons in H.G. Wells’ epic novel The War of the
Worlds, originally published in 1898. In reality, a high-average-power laser weapon system
is very similar to a “heat ray”, or even a blow torch. During the early years of DoD
investments in DE technology, the Navy led the development of HEL with the creation
of the world’s first megawatt-class, continuous-wave, Mid-Infrared Advanced Chemical
Laser (MIRACL), located at White Sands Missile Range (WSMR). Roughly 80 years
after the work of H.G. Wells, the U.S. Navy tested the MIRACL laser and ultimately
used that laser system to engage static and aerial targets in the desert of WSMR in the
following years. While that laser proved to be the wrong choice for the Surface Navy’s
self-defense mission, it did spawn work by the Air Force on the Airborne Laser (ABL),
and the Army on the Tactical High-Energy Laser (THEL). In 2000 and 2001, the THEL
successfully shot down 28 supersonic Katyusha artillery rockets and 5 artillery shells.
Dr. Stoudt is the Distinguished Engineer for Directed Energy (ST)
and the NAVSEA Technical Warrant for Directed Energy and Electric
Weapon Systems.
7
Naval Directed-Energy Weapons —
No Longer A Future Weapon Concept
In 2010, the ABL successfully engaged and destroyed
tactical ballistic missiles during the boost
phase of their flight. All three of these laser systems—
the MIRACL, the ABL, and the THEL—
are chemical lasers that utilize toxic chemicals
and operate in less than optimal wavelengths that
make them a poor choice for most naval applications.
The MIRACL is shown in Figure 1.
Recent advances in solid-state lasers, to include
fiber lasers, have moved these electric lasers
to the forefront of the Department’s research
and development (R&D) for near-term HEL applications
in the services. The Navy has particular
interest in electric lasers, to include the free-electron
laser (FEL), for shipboard self-defense and
force protection applications. The speed-of-light
delivery of HEL energy can defeat the high-g maneuvers
of newly developed foreign antiship
cruise missiles (ASCMs). Thus, the Office of Naval
Research (ONR) started an FEL Innovative Naval
Prototype (INP) program in FY10, with a goal of
reaching the output power of 100 kW. The eventual
goal of the FEL program is to reach the multimegawatt
power level with wavelength selectivity.
The Naval Sea Systems Command (NAVSEA) Directed
Energy and Electric Weapons Program
Office (PMS 405) has been actively developing a
fiber laser-based Laser Weapon System (LaWS)
that could be a retrofit to augment the current capabilities
of the Close-In Weapon System (CIWS)
currently deployed on many surface combatants.
The Naval Surface Warfare Center, Dahlgren Division
(NSWCDD), is the Technical Direction
Agent and lead system integrator for PMS 405 on
the LaWS program. The Naval Air Systems Command
(NAVAIR) has interest in compact, solidstate
HEL systems for aircraft self-protect and
air-to-ground engagements, and will be starting a
Figure 1. Mid-Infrared Advanced Chemical Laser (MIRACL)
8
Directed Energy
Past, Present, and Future
Figure 2. Laser Weapon System (LaWS)
fiber laser-based ONR Future Naval Capability effort
in FY12. LaWS is shown in Figure 2.
High-Power Microwave Weapons
Like lasers, microwave weapons have been fantasized
about ever since the invention of microwave
power generators. In fact, in 1932 it was generally
recognized by the British government that bombers,
ostensibly German bombers, would be able to
penetrate British air space and bomb its civilian
population and infrastructures. In 1934, the Air
Ministry initially asked Robert Watson-Watt, of
the National Physical Laboratory, if he could build
a “death ray” that could kill enemy pilots or detonate
bombs while they are still on the planes of enemy
aircraft. Such a “death ray” had been proposed
to the Air Ministry by Harry Gindell-Mathews
10 years earlier in 1924. Watson-Watt, a former
meteorologist who had become an expert on radio
signals, suggested that energy reflected from an
aircraft could be used to locate it. His experiments
were successful and RADAR (radio detection and
ranging), a name coined by the U.S. Navy in 1940,
was born. While RADAR is not a DEW in the way
they are thought of today, its roots can clearly be
traced to the military’s desire for such capabilities.
The Navy’s HPM, or high-power radio-frequency
(RF) systems, have been progressively increasing
in power density to the point where it is now feasible
to integrate the technology into weapon systems
for deployment. While initial HPM applications
suffered from their inability to obtain militarily
useful outcomes, either due to technology limitations,
difficult concept of operations (CONOPS),
or inherent robustness of potential target systems,
many feasible military applications for using HPM
9
Naval Directed-Energy Weapons —
No Longer A Future Weapon Concept
Figure 3. Multifrequency RF Vehicle-Stopper (RFVS) System
devices have surfaced over recent years to include
nonlethal, antipersonnel weapons and nonkinetic,
antimateriel weapons. While these concepts offer
unique capabilities to the warfighter
due to the
nonkinetic effects they generate, other warfighting
concepts—such as stopping vehicles, or countering
hidden roadside bombs or improvised explosive devices
(IEDs)—are difficult to achieve by any other
means. The multifrequency Radio-Frequency Vehicle
Stopper (RFVS) system is shown in Figure 3.
In addition, the difficulty in overcoming the
propagation losses associated with HPM has driven
some concepts into platforms such as unmanned
aerial vehicles (UAVs) or cruise missiles
that deliver the HPM device to the target for a
close-in engagement. Over the past 10 years, fieldtestable
prototypes have been developed to demonstrate
the operational utility of these concepts,
and in some cases, those prototypes have or will
be deployed operationally to support our troops in
theater. It is only through the hard work and perseverance
of the Naval Research Enterprise (NRE), as
well as other DoD laboratories, that concepts that
were once only laboratory curiosities are now making
their way onto the battlefield and contributing
to the fight.
Foreign Directed-Energy Weapon
(DEW) Development
While the United States has been very active in
this warfighting
area, significant foreign DEW development
also has elevated the need for the Navy
to afford these threats a higher priority. This can be
done either by incorporating the necessary DEW
countermeasures into weapon systems, platforms,
and critical infrastructures, or by adapting the
CONOPS and tactics, techniques, and procedures
(TTPs) employed by our armed forces to properly
account for those foreign DEW systems. Materiel
developers need to understand how this threat
10
Directed Energy
Past, Present, and Future
is evolving and properly address it during the design
of their systems. They also need to address DE
in the development of their system threat assessments.
There has been movement on the HPM side
to modify existing military standards, such as MIL
STD 4641 and others, to now include information
on potential HPM threats. For example, in the HEL
arena, work has been accomplished in the development
of protective measures for eyes; however, this
threat needs to be considered during the system
development process. It is well known that building
in countermeasures is much cheaper during
the initial development of a system, vice trying to
retrofit systems with countermeasures once a new
threat is on the battlefield. As analysts evaluate the
foreign development of DE technologies, and the
trends become clearer, it is the responsibility of the
acquisition community to take this threat into consideration
and ensure that weapon systems, platforms,
and infrastructures will be available and
at full capability when needed. By accounting for
foreign threat developments, assessing blue force
susceptibilities and vulnerabilities, and adopting
appropriate measures to negate or counter these
threats, naval forces will avoid technological surprise
on the battlefield in the future.
Requirements
The DE programs briefly mentioned in this
article, and covered more deeply in this and other
publications, offer warfighters unique capabilities
not currently found in their arsenal. The
continuing problem, however, is matching those
unique capabilities to vetted operational requirements.
The DE technical community has made
great strides in helping the operational community
understand the capabilities of DE weapons and
their potential military effects on targets. The lack
of formal requirements, however, has yielded more
of a technology push—rather than an operational
pull—of various DE capabilities. Progress has been
made, but more effort is required if DE capabilities
are to be developed and transitioned between science
and technology (S&T), and formal programs
of record. Notwithstanding, the current outlook
and trends are positive.
A Resurgence of Navy Interest in
Directed Energy
The Navy’s interest in DEWs for future maritime
operations has increased in recent years due
to a number of weapons development successes.
Recognizing the importance and value of DEWs,
NAVSEA reestablished the Navy Directed Energy
Weapons Program Office (PMS 405) in 2004.
Accordingly, PMS 405 was designated as the point
of contact for matters related to DE and electric
weapon systems (EWS) development and acquisition
initiation for NAVSEA, and for matters
being coordinated with other federal agencies and
military services. PMS 405’s mission is to transition
technology from the laboratory to prototype/
advanced development/testing for operational development
and use.2, 3
The Navy also established its first formal executive
position for DE (ST-level), the Navy’s Distinguished
Engineer/Scientist for Directed Energy,
at NSWCDD in August 2004. Following the establishment
of this position, NAVSEA then formally
established a Technical Authority Warrant
for Directed Energy and Electric Weapon Systems
(DE&EWS)—urface Ships in July 2008. The scope
of the warrant includes the transition of S&T development
to weapon system development of lethal
and nonlethal capabilities associated with the
DE&EWS for Surface Ships.4 This included, but
was not limited to, the following:
• Laser Weapon Systems
◆◆High-Energy Lasers
◆◆ Solid-State Lasers
◆◆Free-Electron Lasers
◆◆Femtosecond Ultrashort Pulse Lasers
◆◆Laser-Induced Plasma Channel
◆◆Lethality/Vulnerability
• Electromagnetic Rail Gun Weapon System
• High-Power Microwave
◆◆Active Denial System
◆◆Laser-Guided Energy
• Maritime Directed Energy Test Center
• Electromagnetic Launch of Weapons (excluding
the Electromagnetic Aircraft Launch
System (EMALS))
Then, within the NAVSEA Warfare Center Enterprise,
Warfare Center leadership established two
technical capabilities (TCs): an NSWCDD TC for
DE systems research, development, test, and evaluation
(RDT&E); and a Naval Surface Warfare Center,
Port Hueneme Division (NSWCPHD) TC for
in-service engineering, test and evaluation (T&E),
and integrated logistics support to DE systems.
NSWCDD leads all S&T and RDT&E for the development
and weaponization of DE systems for surface,
air, and ground environments. It also leads the
development of offensive and defensive DE technologies
needed to characterize and exploit vulnerabilities,
provide weapons, and protect against attack.
NSWCDD provides the technologies, devices, and
systems designed to create or control electromagnetic
energy used to cause persistent disruption or
permanent damage by attacking target materials,
11
Naval Directed-Energy Weapons —
No Longer A Future Weapon Concept
electronics, optics, antennas, sensors, arrays, and
personnel, including nonlethal applications. NSWCPHD
provides in-service engineering, T&E, and
integrated logistics support to DE systems throughout
the system life cycle.
The Navy further demonstrated increased
interest in DE when Assistant Secretary of the
Navy (Research, Development & Acquisition
(ASN(RDA)) designated NAVAIR offensive and
defensive leads for naval aviation DE activities:
• Program Executive Officer for Unmanned
Aviation and Strike Weapons (PEO(U&W)),
assigned as the offensive DE lead for naval
aviation
• PEO for Tactical Aircraft Programs (T), assigned
as the defensive lead for naval aviation
Concerning future initiatives, the Chief of Naval
Operations (CNO) tasked the Strategic Studies
Group (SSG) to examine a topic entitled “Maritime
Operations in the Age of Hypersonic and Directed-
Energy Weapons.”5 The intent of the study
was to provide Navy leadership with an understanding
of where DE technologies and weapons
are today and how they might influence future
maritime operations. The theme of the study was
completed during FY10, the results of which discuss
many DE concepts, as well as tactics for the
employment of DE capabilities. The study’s findings
are currently under review and consideration
by senior Navy leadership.
Conclusion
While H.G. Wells’ The War of the Worlds novel
and television programs like Star Trek popularized
the notion of using DE for weapons in years
past, today— through persistent DEW RDT&E—
Navy leadership is realizing the great potential that
DEWs offer naval warfighters and homeland defenders.
The scientific and technical advances the
Navy has made in HEL and HPM in recent years
have been nothing short of extraordinary. Moreover,
future technological and engineering advances
undoubtedly will result in profound differences
in our nation’s future warfighting capabilities. Naval
DEWs, therefore, are no longer just a future
weapon concept…they are here today.
References
1. Department of Defense Interface Standard, Electromagnetic Environmental
Effects—Requirements for Systems, MIL-STD-464, 18
March 1997.
2. NAVSEA Notice 5400, Ser 09B/240, Subject: Establishment of the
Navy Directed Energy Weapons Program Office (PMS 405), dated
4 January 2002.
3. NAVSEA Instruction 5400.101, Ser SEA 06/058, Subject: Directed
Energy and Electric Weapons Program Office (PMS 405) Charter,
dated 21 July 2004.
4. NAVSEANOTE 5400 Ser 09B/240 of 4 January 2002 and
NAVSEAINST 5400.101 Ser SEA 06/058 of 21 July 2004.
5. Letter from the CNO tasking the SSG XXIX Theme—”Maritime
Operations in the Age of Hypersonic and Directed-Energy Weapons,”
dated 23 September 2009.
12
Directed Energy
Past, Present, and Future
Historical Overview of
Directed-Energy Work at Dahlgren
By Stuart Moran
In 1962, the United States set off a megaton nuclear weapon 250 miles above the
Pacific. The blast caused a large imbalance of electrons in the upper atmosphere that
interacted with the Earth’s magnetic field to create oscillating electric fields over a large
area of the Pacific. These fields were strong enough to damage electronics in Hawaii, a
thousand miles away, and clearly demonstrated the effects of an electromagnetic pulse
(EMP). It didn’t take long for the military to begin considering ways to create such
pulses without using nuclear weapons.
In the late 1960s, the Special Applications Branch at the Naval Weapons Laboratory
at Dahlgren began studying ways to generate high-power oscillating electric fields that
could be used as a weapon to damage enemy electronics. These devices were basically
high-power versions of the old spark-gap transmitters used in the early days of radio.
To construct a device that could produce nuclear EMP-like fields, stored electrical energy
was converted to radio-frequency (RF) energy that could be radiated from an antenna
through the atmosphere to a target. These devices typically would store energy in
a high-voltage capacitor and release the energy quickly using a spark-gap switch. This
would then drive oscillating currents on an antenna, causing it to radiate. To achieve
field strengths of thousands of volts per meter, typical of a nuclear EMP, devices operating
at hundreds of thousands of volts or more were needed.
A number of radiating devices were studied in the early 1970s. Most belonged to a
class of devices called Hertzian oscillators. A capacitor is charged to high voltage, the
switch is closed, and current flows in the circuit, causing the stored energy to oscillate
between the electric field of the capacitor and the magnetic field of the inductor.
To charge the capacitor to extremely high voltages, a step-up transformer of some type
must be used. One of the fastest voltage multipliers, the Marx generator, was frequently
used. The losses from internal resistance and external radiation damp the oscillating
waveform, typically after a few cycles. The radiated pulses are, therefore, short in
time and broad in frequency content.1 A simple diagram of the inductance-capacitance
oscillator (L-C oscillator) is shown in Figure 1.
Single-Pulse Burnout Devices
Many types of Hertzian devices were designed, constructed, and tested at Dahlgren during
the 1970s. The transmission-line oscillator, or cavity oscillator, used a quarter-wavelength
13
Historical Overview of
Directed-Energy Work at Dahlgren
coaxial pipe, which was switched at one end, to create
the oscillating waveform. A frozen wave generator,
a different type, had quarter-wave sections of cable
that were charged plus and minus to create a twocycle
waveform “frozen” in the cable. All sections
were simultaneously switched, causing the wave to
travel to an antenna. A special folded design was developed
so one switch could be used, eliminating
the multiswitch synchronization problem. A Ross
circuit used a square wave pulse, which traveled
down cable “tees,” creating reflections, which were
timed to create several RF cycles. In the Travetron,
the turn-on time of a series of spark-gap switches
was incorporated as a designed delay, creating
reflections through a series of gaps to produce the
waveform. This design allowed higher frequencies.
All of these devices were designed, built, and tested
to determine power and frequency capabilities,
as well as efficiency.
Scientists and engineers at Dahlgren built and
tested versions of Hertzian oscillators operating up
to half a million volts. These devices powered relatively
simple monopole or dipole antennas that
could produce very high electric fields at hundreds
of meters. In the early 1970s, a special outdoor
field-measurement range was constructed.
It housed high-voltage systems in underground
trailers that fed antennas above ground on a specially-
built, 100-m-long ground plane that was
constructed for testing and field measurements. A
picture of the ground place in a fielded measurement
range is shown in Figure 2. Field probes were
even carried aboard helicopters to make measurements
above ground effects, as shown in Figure 3.
Other types of devices to produce pulses were
constructed, too. Vector inversion generators used
spiral-wound capacitive plates to generate high
voltages without transformers.2, 3 The Landecker
ring used a paddle-wheel arrangement of capacitors
and inductors charged in parallel and discharged
in series. The circular arrangement was
designed so the entire system would radiate as a
magnetic dipole, thus forming its own antenna.4
Switch timing was critical, and Dahlgren engineers
attempted to verify reports that Landecker developed
a specific type that brought all capacitor leads
into a single-center spark gap.
Scientists and engineers also looked at devices
that used explosives to generate the electrical energy
needed. These included explosive flux compressors
of several types, which generated fields and then explosively
squeezed the fields between conductors to
amplify the peak power. In the early 1970s, a large
(70-ft clear zone) anechoic chamber was constructed
at Dahlgren with an explosive chamber in one
end. Explosives would be set off in the chamber to
drive various types of flux compressor schemes that
would generate electrical pulses fed into an oscillator
and antenna in the anechoic chamber. Pulse parameters
and field strengths could be measured. Impedance-
matching networks, matching transformers,
and methods of improving efficiency were studied.
Tests were performed at Dahlgren and at Los Alamos
using large antennas suspended from balloons.5
In other schemes, piezoelectric devices were developed,
which could be compressed hydraulically and
then quickly released to produce high voltages. The
concept was to use explosives to generate the high
Figure 1. Inductance-Capacitance Oscillator (L-C Oscillator) Diagram
14
Directed Energy
Past, Present, and Future
Figure 2. Field Measurement Range
Figure 3. Airborne Electric Field Measurements
15
Historical Overview of
Directed-Energy Work at Dahlgren
pressures. Ferroelectric and ferromagnetic transducers
driven by explosives were also tested.6
Special Effects Warhead
(SEW) Program
In 1973, Dahlgren began the SEW Program to
look at the feasibility of “burning out” enemy radar
and missile systems using single-shot, very highpeak-
power EMPs. The program looked at the
feasibility of constructing an electromagnetic warhead
that could disable electronics beyond a normal
hard-kill explosive range as far as a mile away.
The program was funded at several million dollars
a year through most of the 1970s.
A major thrust of the SEW Program was to
better understand the effects of high fields on military
electronics. Little information was available
on the vulnerability of foreign or U.S. electronics,
particularly entire systems. A trailer-based RF impulse
system, employing a Marx-driven L-C oscillator
charged at two million volts, was constructed
at Dahlgren. This Transportable Oscillating Pulser
System (TOPS) was connected to a large boundedwave
structure that produced uniform fields over a
region large enough to place an entire radar or missile
system. The electric field emitted from the throat
of this system was so high that a special bag of highvoltage
gas was needed until the radiating structure
became large enough to transition to the normal atmosphere.
A picture of TOPS is shown in Figure 4.
Since many important target systems were not
available for testing, much of the vulnerability information
was obtained from U.S. electronics, and
estimates were then made for foreign systems. In
addition to the tests done at Dahlgren, pulsers were
also constructed in mobile trailers that could be
transported to other sites for testing against simulated
or actual targets. The Mobile Oscillating Pulser
System (MOPS) was an example that was carried
to test sites, such as China Lake, to perform tests
against radars and simulated foreign systems.
A key requirement for the SEW Program was
to demonstrate enforceable target vulnerability,
which means that a high percentage of the time a
large percentage of the targets are affected. One important
finding was the broad difference between
an electromagnetic safety concern—here a 1 percent
vulnerability was far too great—nd a weapon
concern—here a 10 percent vulnerability was
not good enough. The field strengths between the
safety requirements and weapon requirements often
were many orders of magnitude apart.
The SEW Program looked at many types of
electronic component vulnerability, subsystem
vulnerability, and complete system vulnerability.
As a result, energy tables for burnout effects were
developed. Subsequently, Dahlgren performed numerous
field tests against radar and communications
systems between 1973 and 1978, and funded
component and subsystem testing on missiles.
Figure 4. Transportable Oscillating Pulser System (TOPS)
16
Directed Energy
Past, Present, and Future
Repetitive Systems for
Electronic Warfare
The electric fields required to damage military
electronics in the 1970s often were very high, and
ranges typically were limited. As a spinoff of programs
trying to damage targets with a single pulse,
some of these devices were reduced in size and
power, and operated in a repetitive mode to generate
noise pulses for the purpose of electronically
jamming target systems. In 1976, the Naval Air
Systems Command (NAVAIR) began the Electromagnetic
Countermeasures Program to study the
application of high-repetition-rate Hertzian devices
for use as noise jammers. The initial targets were
low-frequency radars.
In late 1976, Dahlgren performed effectiveness
tests against various radars using helicopter-mounted
Hertzian jammers. These devices were able to
screen incoming target aircraft at useful ranges. The
concept of a forward-launched rocket to deliver a
parachute-suspended Hertzian jammer also was investigated.
Dahlgren teamed with engineers at China
Lake to study packaging concepts of utilizing an
extended 5-inch Zuni rocket as a forward-fired delivery
vehicle. A prototype is shown in Figure 5.
Similar Hertzian devices were considered for
use as communications and data-link jammers.
Several antenna deployment schemes were developed,
and by fall 1978, successful ground launches
had been performed in which the deployment sequence
and jammer operation were demonstrated.
The name Zuni Expendable Pulsed-Power Oscillator
(ZEPPO) was given to the project. Dahlgren
teamed with the Naval Avionics Center (NAC) to
build the systems. By 1980, China Lake fired the
first air-launched prototypes at both low and high
altitudes. Devices, batteries, spark gaps, and antennas
continued to be developed, and new targets—
such as spread-spectrum systems—were tested.
Other delivery systems besides rockets were also
considered.
The Pulsed Power
Technology Program
Large directed-energy weapons (DEWs) often
required megawatts or gigawatts of peak power,
so methods of supplying and modifying this power
were needed. As Dahlgren became involved in a
broad range of DEW systems, one attribute became
more and more obvious: the size, weight, and cost of
a directed-energy (DE) system were dominated by
the pulsed-power technologies needed to drive the
system, not by the source device itself. Consequently,
more effort began to be devoted to the power-delivery
technologies needed for many of the weapon
concepts. Pulsed-power components enabled energy
to be stored over long periods of time (seconds)
and released very quickly (nanoseconds) to obtain
a billion times increase in peak power.
Dahlgren hosted a pulsed-power systems
symposium and workshop in 1976 and helped
initiate the International Pulsed Power Conferences,
which began in 1977 and continues today
under the Institute of Electrical and Electronics
Engineers (IEEE). As Dahlgren’s involvement
with systems design increased, it became apparent
that new technologies were needed in the primepower
and pulsed-power area to support a variety
of new concepts. Dahlgren urged the Navy to
initiate a Pulsed Power Technology Program to
develop power sources, energy storage systems,
high-power switches, and power conditioning systems
needed for a variety of future weapons. This
program was initiated in 1978 and was originally
funded by NAVAIR and then by the Directed Energy
Program Office (PMS 405) in the early 1980s.
In addition to the Pulsed Power Technology Program,
PMS 405 also began funding free-electron
lasers (FELs), chemical lasers, high-power microwaves
(HPMs), and charged-particle beams
(CPBs). The Pulsed Power Technology Program at
Dahlgren, in turn, funded many areas of research,
both internal and external, over the next 10 years.
Dahlgren served as the focal point for the Navy’s
science and technology (S&T) in pulsed power
and funded many universities, government laboratories,
and commercial companies under the
Pulsed Power Figure 5. ZEPPO Payload Technology Program.
17
Historical Overview of
Directed-Energy Work at Dahlgren
To provide large amounts of electrical prime
power, new types of rotating machines were studied,
including flywheels, conventional alternators,
homopolar generators, rotary flux compressors,
and compensated pulsed alternators. These machines
attempted to produce fast, high-power pulses
using special materials to reduce losses, eddy
currents, and mechanical stresses. MHD generators
were developed using rocket-motor propellant
that could be started and stopped. In the mid-
1980s, a full-scale hybrid (solid fuel/liquid oxidizer)
combustor was fabricated and tested at 10 MW,
achieving world records for power-to-weight ratio
and conductivity. By 1980, new types of energy
storage systems were studied, including inductive
storage and advanced capacitors using new types
of insulating materials and geometries. During the
late 1980s, programs such as the Mile-Run Capacitor
Program reduced the capacitor size by a factor
of 10 through better synthesis of polymer films.
Beginning with internal independent research
funds, Dahlgren developed liquid dielectric materials
based on water/glycol mixtures at low temperatures.
These water-capacitor devices could
hold energy for orders-of-magnitude longer time
periods than ever before, allowing pulseforming
lines to be constructed that could be charged directly
from rotating machines. Dahlgren scientists
developed a world-record high-voltage water
capacitor that could hold pulses for milliseconds
and became internationally recognized experts in
water breakdown.7, 8
High-power fast switching was another important
area of research. Dahlgren funded companies
to develop new types of multistage thyratrons that
could operate at very high voltages. By the early
1980s, multistage thyratrons capable of operating
at over 200 kV, 40 kA with 20 nsec risetimes were
demonstrated. Vacuum switches, ignitrons, plasma
pinch switches, pseudospark switches, backlighted
thyratrons, and e-beam switches all were
studied, as well as a variety of spark-gap switches.
Higher power solid-state switches were developed,
too, using new geometries and substrate material.
Superconducting coils were considered, both
for energy storage and as opening switches. Dahlgren
engineers developed exploding-wire opening
switches, and several types of plasma pinch switches
were funded. They also worked on stacked cable
pulsers. Additionally, concepts for electromagnetic
armor were developed. These systems used
high-density capacitors to blunt penetrators. Inductive
energy storage—which could be far denser
than capacitors—was studied, including methods
of generating the seed current and the problematic
high-voltage opening switch. Opening switches—
which were needed for inductive energy store systems—
were studied, as well as magnetic switches,
which used saturating magnetic material to sharpen
pulses. Magnetic switches operating at 10 kHz
were demonstrated by 1983.9
In 1985, Dahlgren used internal funds to upgrade
a facility to provide controls, diagnostics, and
200 kW of average power at 50 kV to accommodate
testing of new switches and water-based capacitors.
This facility could control the power with a vacuum-
tube pulser and could generate over a million
volts with a rep-rated Marx generator. The facility
was used to:
• Develop water-dielectric energy storage, reprated
spark gaps, and pseudospark switches.
• Test a variety of switches developed by contractors,
such as back-lighted thyratrons.10, 11
A picture of one system being tested—a water pulseforming
line and spark-gap switch—is shown in
Figure 6.
Dahlgren concentrated in-house switching efforts
in spark gaps. New types of gases were studied,
as well as electrode materials, gas-flows, switch
geometries, and triggering techniques to produce
high-repetition-rate switches for electronic warfare,
as well as particle-beam weapons.12 Dahlgren
scientists and engineers demonstrated 100-μs recovery
of spark-gap switches after handling kilojoules
of energy at hundreds of kilovolts, a world
record.13 The High Energy 2-Pulse System for fast
recovery experiment is shown in Figure 7.
In 1986, Dahlgren ran a workshop on highpower
switching for Navy tactical and Department
of Defense (DoD) strategic applications and
became involved with numerous DoD working
groups on electromagnetic propulsion, high-power
diagnostics, advanced energy conversion, power
modulators, and pulsed power. Spark gaps were
investigated to create underwater noise for submarines.
Dahlgren also led four North Atlantic Treaty
Organization (NATO) Advanced Study Institutes
in Europe and the UK on various pulsed-power
topics. International assessments of key pulsedpower
technologies were also performed.
Particle-Beam Weapons
Particle-beam weapons were a major focus of
DE work during the 1970s and 1980s. A CPB weapon
takes subatomic particles, generally electrons,
and accelerates them to near the speed of light before
sending them toward a target. These fast electrons
penetrate deeply into most materials, so they
are difficult to counter. The high-current electron
beam was to be accelerated by an induction-type
18
Directed Energy
Past, Present, and Future
Figure 6. A Water Pulse-Forming Line and Spark-Gap Switch Test
Figure 7. High Energy 2-Pulse System
19
Historical Overview of
Directed-Energy Work at Dahlgren
accelerator, repetitively pulsed. High electronbeam
currents (kiloamps) and a hole-boring series
of pulses were anticipated to create a stable, longrange
beam. Since the beam was capable of penetrating
quickly and deeply into any target material,
it had the potential to damage electronics and set
off explosives before salvage fuzing could occur.
The beam was predicted to be all-weather and essentially
countermeasure-proof. Even a near miss
could cause substantial damage from high fields
and X-rays produced by the deceleration of electrons
as they hit air molecules near the target. The
CPB concept is shown in Figure 8.
Scientists and engineers from Dahlgren worked
on the pulsed-power technologies needed to drive
these machines beginning in 1980, and it became
a major focus of the Pulsed Power Technology
Program.14 The White Oak Laboratory developed
beam-steering concepts and looked at material interactions.
By 1989, the program investigated:
• Propagation
• Compact Recirculating Accelerators
• Pointing and Tracking
• Prime Power
• Material Interaction
• Fratricide
For a compact shipboard system, recirculating
accelerators were needed to make multiple passes
of the electron beam past the accelerating cavities.
This required a high-power, fast recovery switch,
which Dahlgren began working on in 1988. Using
patented hydrogen switches and special triggering
techniques—efforts that had begun with internal
research funds—Dahlgren demonstrated sparkgap
switches, the only technology that could meet
the current, voltage, and recovery requirements at
that time.15 The High-Voltage 5-Pulse System experiment
is shown in Figure 9.
During these technology efforts, significant
advances were achieved in all aspects of the program.
These included:
• Generating high-current, high-energy beams
(although still below weapons parameters)
• Demonstrating a 360o turn in a high-current
beam
• Propagating a single pulse through the air
• Demonstrating beam steering on a small scale
• Performing target interaction measurements
Multipulse, long-range propagation was never
demonstrated. A comprehensive tri-service summary
called the Net Technical Assessment for CPB
was sponsored by the Defense Advanced Research
Projects Agency (DARPA) in 1987 to describe the
accomplishments of the program. The report said
compact accelerators were the most pressing technology
need. As a result, most funding was directed
toward this topic. Funding was stopped in
the early 1990s, however, due to the high expense,
stretched timelines, and changes in the threat.
Pulsed Power and
Electromagnetic Launchers
During the 1980s, the Army and Air Force
looked at short-range electromagnetic weapons
to penetrate stronger armor with higher velocities.
The Navy worked on concepts for a weapon
that could be mounted on ships to intercept missile
systems at line-of-sight distances. The Navy—then
the biggest user of space systems—was also interested
in studies showing that small satellites could
Figure 8. Charged-Particle Beam (CPB) Concept
20
Directed Energy
Past, Present, and Future
be electromagnetically launched into low Earth orbit
for the fraction of the cost for a normal launch.
Through the 1980s, electric guns were funded
by independent research and independent exploratory
development programs at Dahlgren, studying
electric gun concepts for both rail guns and
electrothermal (ET) guns. Kinetic energy weapons
were also investigated as part of the Pulsed Power
Technology Program. Under these programs, pure
electric launchers were developed and tested at
Dahlgren, including ones that self-formed projectiles.
16–18 Also studied were ET guns that used the
discharge of electrical energy at the gun breech to
generate a plasma jet. This plasma jet heated a lowmolecular-
weight working fluid, such as water, to
produce a heated gas that accelerated the projectile
to higher velocities than conventional explosives.
The Electrothermal-Chemical (ETC) Gun concept
augmented the electrical energy generating
the plasma jet with a chemical reaction. A 127mm
ETC gun was investigated, and a 60mm ETC gun
was tested at Dahlgren, with the ability to fire short
bursts at a rate of 100 rounds per minute.19
Early Dahlgren work on electromagnetic
launchers—along with capacitor development and
switch advances from the Pulsed Power Technology
Program—allowed Dahlgren to provide the
Navy with detailed conceptual designs in the late
1990s for near-term, long-range rail guns based on
capacitor energy store. These efforts helped support
the decision to begin a long-range rail-gun
program at Dahlgren that continues today, resulting
in world-record achievements. Capital investment
funds were used to construct a high-energy
facility in 2005 to test pulsed-power components
and module designs for use in electromagnetic
launcher programs. An early electromagnetic
launcher is shown in Figure 10.
High-Energy Lasers (HELs)
In general, megawatts of continuous laser
power are required to kill hard targets at long ranges.
Laser technologies that can produce this much
power are very limited. The Navy was a leader in
developing powerful chemical lasers in the 1970s
and 80s. These lasers burned chemical reactants to
Figure 9. High-Voltage 5-Pulse System Experiment
21
Historical Overview of
Directed-Energy Work at Dahlgren
generate the excited states for lasing, thus reducing
the need for large amounts of electrical power.
The Navy built an entire HEL system, including
the Mid-Infrared Advanced Chemical Laser
(MIRACL) and the Sea-Lite beam director. By
1990, this building-sized system demonstrated
shooting boosters, missiles in flight, and supersonic
vehicles. However, the system had drawbacks
because it:
• Used hazardous, expensive chemicals
• Had propagation problems at the midinfrared
wavelength
• Was large in size and high in cost
FELs require electron accelerators similar to
CPB weapons, so they also are large and complex.
However, they can be designed to operate at optimum
wavelengths and scale nicely to higher powers.
The Strategic Defense Initiative began working
on FELs in the late 1980s, funding the advanced
test accelerator at LLNL, originally developed for
CPBs. FELs were also studied under the Strategic
Defense Initiative Organization (SDIO) to be used
as an antisatellite weapon. These lasers went from
milliwatts to watts under SDIO, and then to kilowatts
more recently with work at the Thomas Jefferson
National Accelerator Facility in Virginia.
Space-based lasers and relay mirror systems were
studied under SDIO funding, too, including the
development of the Advanced Beam Control System
for beam steering, beam control, rapid optical
retargeting, and self-alignment.
Dahlgren engineers concentrated its internal
laser efforts on medium-power soft-kill weapons.
They performed tests against sensors and cameras,
and investigated damage thresholds. In the
late 1980s, Dahlgren engineers worked with optical
augmentation to locate enemy optics for targeting
and on green laser dazzlers for defense against
small-boat attack. There were efforts to harden
electro-optical equipment, including sights and
night-vision systems for the Marines, and laser
eye-protection filters for goggles and binoculars.
Laser systems were also investigated for remotely
cutting holes and wires to disable electronics. Lethality
work continued under funding from the
Joint Technology Office for High-Energy Lasers to
look at alternative wavelengths and pulse shapes in
addition to modern target materials.20
Dahlgren scientists continued to investigate
laser-damage thresholds for materials, components,
and subsystems for a variety of laser
technologies. Near the start of the 21st century,
Figure 10. Early Electromagnetic Launcher at Dahlgren
22
Directed Energy
Past, Present, and Future
commercial lasers based on pumping optical fibers
with semiconductor lasers became common
and more powerful. Dahlgren purchased the Navy’s
largest collection of fiber lasers in 2004 and
began investigating ways to combine multiple
beams into a laser weapon. These lasers have very
high efficiencies, above 20 percent, and the fiberoptic
output reduces the requirement for complex
optical paths. In 2008, Dahlgren engineers demonstrated
a laser capability to ignite spinning mortar
rounds, and in 2009, engineers demonstrated
the capability of fiber lasers in a shoot down of soft
targets at China Lake, California.
Resurgence of Directed Energy
With the fall of the Soviet Union and a greatly
altered threat, DoD funding (particularly technology
funding) experienced an overall decline in the
late 1980s and early 1990s. This caused Navy managers
to emphasize near-term, lower risk, evolutionary
concepts. The Pulsed Power Technology
Program and the Navy’s Charged Particle Beam
Program both came to an end. Investigations into
HPM weapons declined as the difficulty of burnout
of military electronics—articularly analog
components—ecame apparent. Problems with
propagation and cost caused the Navy to greatly
reduce efforts on chemical lasers. With the cancellation
of major programs, Dahlgren used internal
funding in 1990 to keep a core technical capability
together, which was necessary for the Center to
remain in the mainstream of tactical DE and its
associated technologies. Efforts continued in water
breakdown, testing of contractor-developed
pulsed-power components, and electric guns.
New talent and technologies from universities
were brought in to jump-start new projects. Tunable
waveform generators using unique semiconductor
materials were developed. These used bulk
semiconductor material, fabricated in-house, that
could be used as a fast switch controlled by laser
light for both on and off operation. This allowed
faster repetition rates and better triggering than
could be done with small spark gaps, as well as
the ability to create specific waveforms.21 “Green”
technologies were also investigated using nonthermal
plasmas and spark-gap shock waves for
cleaning and pollution reduction.22 New types of
particle detectors and magnetic field sensors were
developed, and new methods of infrastructure
protection were investigated.23 Soft-kill weapons,
both optical and HPM, continued to be studied.
Short-pulse jamming of spread-spectrum systems
was investigated, as well as beat-wave coupling
and special waveforms.24
A number of trends led to a resurgence of
DEWs by the end of the 20th century. The DoD
trend in using digital electronics and off-the-shelf
commercial technologies increased dramatically.
The pace of change in electronics and computers
changed rapidly, too. Most of these new electronic
systems had never been tested for vulnerability, and
there was a question of how much they would increase
military vulnerability to RF or HPM attack.
The reduced emphasis on nuclear EMP shielding
meant more military electronics were not as well
protected from RF attack. Consequently, interest
in protecting U.S. military and civilian infrastructure
increased, including systems in foreign countries.
Moreover, with the increasing reliance on
civilian infrastructure, such as power, communications,
and emergency and industrial systems—all
of which were controlled by digital electronics—
the potential that an adversary could attack infrastructure
systems to affect or divert military
operations became an increasing concern. Following
several major terrorist attacks during this time
period, there was also concern about the impact of
an RF attack on airport towers, financial systems,
alarm systems, and industrial plants. Human factors—
such as a state of confusion experienced by
humans—also played an important part in determining
the overall effects of an RF attack.
The asymmetric threat—where large numbers
of cheap weapons in a swarm attack could overrun
a few sophisticated weapons—caused more concern.
As the asymmetric threat to the surface Navy
pushed the limits of conventional defensive systems,
DE—with it speed-of-light propagation, softkill
potential, and cheap rounds—offered tactical
advantages, either as an adjunct to conventional
systems or as stand-alone systems. Additionally,
there was an increased emphasis on nonlethal, precise
accuracy and graduated effects that could be
used. Moreover, the idea that future battles would
be fought together with civilians and friendly forces
on the battlefield increased the importance of
low collateral damage and antimateriel attacks.
The Joint Program Office for Special Technology
Countermeasures (JPO/STC), located at Dahlgren,
began efforts concerning the vulnerability of
new digital systems to RF attack. The program also
established a DoD-wide database of vulnerability
data, source designs, and RF-effects information—
bringing together much of the information collected
by the services over the years. The program
looked at the protection of modern digital infrastructure
systems and funded a facility constructed
in 1992 to test large-scale electromagnetic vulnerabilities
to various methods of attack.
23
Historical Overview of
Directed-Energy Work at Dahlgren
In the late 1990s and early 2000s, Dahlgren
initiated programs regarding the potential for RF
attack using nonkinetic disruption, with minimal
collateral damage. Capital investment funds
were used to construct a test facility for this effort
in 1998. Dahlgren developed RF payloads
for remotely piloted vehicles and demonstrated
their effectiveness in field tests in 1999, and in
similar tests in 2007. The successful completion
of Project Guillotine was DoD’s first demonstration
of this type of HPM technology. As the need
for statistical vulnerability to commercial digital
systems became apparent, Dahlgren constructed
instrumented test facilities in 1999 and 2002.
Two multistory buildings could be reconfigured
to reflect different types of building construction
and electromagnetic shielding. Large complexes
of electronics, computer networks, server systems,
telephone systems, security systems, and
various types of digital industrial controls could
be assembled, instrumented and exposed to attack
from an external device or technique. This
program-funded complex—alled the Maginot
Open Air Test Site (MOATS) facility—ontinues
to be used to test target systems, as well as a variety
of RF weapon technologies developed internally
and by external and international organizations.
A picture of the MOATS facility is shown in
Figure 11.
As the need for additional DE laboratory space
and testing capabilities became apparent, Dahlgren
applied for military construction funds, and
in 2008, constructed the Naval Directed Energy
Center (NDEC), with access to Dahlgren’s overwater
test range. Other construction funds were
used to construct a remote facility at the Pumpkin
Neck Explosive Test Range to serve as a laser backstop
and measurement facility, as well as an explosive-
test staging area. These facilities already have
been used to develop and test fiber lasers against
modern threat targets. Construction is currently
underway to build an expansion of the NDEC and
a 120-m laser test laboratory building using an existing
tunnel structure. This collection of facilities
represents very important capabilities to develop
and test future DE systems.
Conclusion
For over 40 years, the Naval Surface Warfare
Center, Dahlgren Division (NSWCDD) has been
a leader in developing DE devices, pulsed-power
systems, and electric weapons. Its people have
contributed many publications and patents, and
set world records. DEWs tend to be complex and
technically challenging to build. Regardless, these
weapons offer important, powerful advantages,
such as:
• Deep Magazines
• Cheap Rounds
• Fast Targeting
• Variable Lethality
• Pinpoint Targeting
As a result of NSWCDD’s leadership, persistent
scientific initiatives, and leading-edge engineering
Figure 11. MOATS Facility Undergoing Testing with an RF Weapon (on right)
24
Directed Energy
Past, Present, and Future
over the years, naval warfighters will increasingly
find themselves turning to DEWs when dealing
with situations spanning the spectrum of conflict.
References
1. Moran, S.L., “High Repetition Rate L-C Oscillator,” IEEE Transactions
on Electron Devices, Vol. ED-26 No. 10, October 1979.
2. Fitch, R.A. and Howell, V.T.S., “Novel Principle of Transient High-
Voltage Generation,” Proceedings IEEE, Vol. III, April 1964.
3. Ramrus, A. and Rose F., “High-Voltage Spiral Generators,” 1st International
Pulsed Power Conference, Lubbock Texas, pIIIC9, November
1976.
4. Landecker, K.; Skatterbol, L.V. and Gowdie, D.R., “Single Spark Ring
Transmitter,” Proc. IEEE, Vol. 59, No. 7, July 1971, pp. 1082–1090.
5. Erickson, D.J.; Fowler, C.M. and Caird, R., EM Radiation from an
Explosive Generator System Coupled to a Large Antenna, Los Alamos
Scientific Laboratory Report M-6-258, March 1978.
6. Fowler C.M. and Brooks, M.L., Explosive Flux Compression Devices
Project, ARPA Order No. 2161, Semiannual Technical Report,
1 March 1972–31 August 1972.
7. Zahn, M.; Ohki, Y.; Fenneman, D.; Gripshover, R. and Gehman,
V., “Dielectric Properties of Water and Water/Glycol Mixtures
for Use in Pulsed Power System Design,” Proceedings of the IEEE,
September 1986, pp. 1182–1221.
8. Gehman, Jr., V.H.; Gripshover, R.J.; Berger, T.L.; Bowen, S.P. and Zia,
R.K.P., “Effects of Filtration on the Impulse Breakdown Strength of
High-Purity Water,” IEEE 1995 Tenth International Pulsed Power
Conference, Albuquerque, New Mexico, 10–13 July 1995.
9. Moran, S.L., Pulsed-Power Technology Program: Accomplishments
in Switching, NAVSWC Tech Note TN-89-259, 1990.
10. Berger, T.L.; Gehman, Jr., V.H.; Lindberg, D.D. and Gripshover,
R.J., “A 2.5 Gigawatt Liquid Dielectric Coaxial Pulse Forming
Line,” Proceedings of the 6th IEEE International Pulsed Power Conference,
Arlington, Virginia, 29–30 June and 1 July 1987.
11. Bernardes, J.S., “A High Power Fast Response Switch Testing System,”
7th IEEE Pulsed Power Conference, June 1989.
12. Moran, S.L. and Hutcherson, R.K., High-PRF High-Current Switch,
U.S. Patent No. 4,912,396, 27 March 1990.
13. Moran, S.L. and Hardesty, L.H., “High-Repetition-Rate Hydrogen
Spark Gap,” IEEE Transactions on Electron Devices, Vol. 38, No.4,
April 1991.
14. Rose, M.F. and Huddleston, C.M., Pulsed Power and Directed Energy
Technology, 10th Anniversary Technical Symposium, NSWC
MP 84-560, October 1984.
15. Moran, S.L., “Hydrogen Spark Gap for High-Repetition-Rate
Compact Accelerators,” NSWCDD Technical Digest, NSWCDD/
MP-92/104, September 1992, pp. 126–139.
16. Bernardes, J.S. and Merryman, S.,“Parameter Analysis of a
Single Stage Induction Mass Driver,” Proceedings of the Fifth
IEEE Pulsed Power Conference, Arlington, Virginia, June 1985,
pp. 552–555.
17. Bernardes, J.S., “Muzzle Velocity Control with Electrothermal
Guns,” Proceedings First Navy Independent Research/Independent
Exploratory Development Symposium, Laurel, Maryland, June
1988, Vol. 2, pp. 123–131.
18. Bernardes, J. S., “Focusing Induction Accelerator,” Proceedings of
the Sixth IEEE Pulsed Power Conference, Arlington, Virginia, June
1987, pp. 735–738.
19. Bernardes, J.S., Sliding Breech-Block for Repetitive Electronic Ignition,
Patent Number: 5,233,902, 10 August 1993.
20. Kim, H.S. et al., “Effects of Chopping Laser Penetration of Metal
Targets,” Applied Physics Letters, 55 (8), 21 August 1989.
21. Stoudt, D.C. and Schoenbach, K.H., “The Electrical Characteristics
of Semi-Insulating GaAs for High-Power Switches,” 7th IEEE
Pulsed Power Conference Proceedings, June 1989.
22. Grothaus, M.G. et. al., “Gaseous Effluent Treatment using a Pulsed
Corona Discharge,” Proceedings of 10th IEEE Pulsed Power Conference,
Albuquerque, New Mexico, July 1995.
23. Gripshover, R.J. et. al., Power Frequency Magnetic Field Detection
Systems, Patent No. 6,483,309, 19 November 2002.
24. Spread Spectrum Countermeasures Final Report, E-Systems, Inc.,
Melpar Division under NSWC contract # N68786-82-C-0109.
25
Historical Overview of
Directed-Energy Work at Dahlgren
NAVSEA Warfare Centers
26
Directed Energy
Past, Present, and Future
History of Laser Weapon Research
By Melissa Olson
The idea of using light as a weapon can be traced back to Hippocrates, commander
of the Greek forces in 212 B.C. His forces supposedly set fire to the sails of the Roman
fleet by focusing sunlight with mirrors. Weapons systems based on lasers and “ray guns,”
long a staple of science fiction, have captured the imagination of people everywhere. But
with steady progress toward the development of lasers in the last 40 years, viable, stateof-
the-art laser weapon systems have now become a reality.
The production of lasers in the modern scientific world is fairly new. The first laser
was developed in the 1960s and represented the beginning of a drastic change in how
the military viewed warfare. The late 1970s and 1980s, too, marked a busy time period
for developing lasers into possible weapon systems. All branches of the military and
industry were striving to master high power levels, beam control, and adaptive optics.
In 1999, the Department of Defense (DoD) formally recognized lasers as future weapons
and began research and development (R&D). In 2000, the Joint Technology Office
for High Energy Lasers was formed to bring all laser technologies together to develop a
complete laser weapon system that could be used by the warfighter.
Electromagnetic Spectrum
The electromagnetic spectrum contains all the types of electromagnetic energy, including
radio waves, microwaves, infrared, visible light, ultraviolet, and gamma rays.
Laser is an acronym for “light amplification by stimulated emission of radiation.” Light,
therefore, is a type of electromagnetic radiation. Light is made up of tiny packets of energy
called photons. The amount of energy is what determines the wavelength. Lasers
are usually infrared (1 mm to 750 nm) and visible light (750- to 400-nm wavelength).
Microwaves are mostly high-frequency radio waves (millimeters to centimeters), with
wavelengths 10,000 times longer than lasers. Diffraction of any electromagnetic radiation
beam is based on the wavelength and aperture size. For the same aperture size, lasers
diffract 10,000 times less than microwaves. This allows the beam to reach farther
ranges while maintaining a small spot size of concentrated energy on the target. Lasers
are preferred in specific scenarios because of minimal diffraction. The electromagnetic
spectrum is shown in Figure 1.
Laser Fundamentals
The quantum mechanical idea of stimulated emission of light was discovered by
Albert Einstein in 1917 and is one of the fundamental ideas behind the laser. Einstein
27
History of Laser Weapon Research
theorized that when a photon interacts with an
atom or molecule in an excited state, two photons
are produced when the atom or molecule leaves the
excited state. Population inversion occurs when the
atoms or molecules are in the excited state. In order
for molecules to come out of the normal “ground”
state, a source of power must be introduced to the
system energizing the atoms to the excited state.
When many photons are passed through many excited
atoms, more and more photons are produced.
The photons are contained and reflected back and
forth in a cavity, with mirrors usually on each end.
The mirror on the output end is only partially reflective,
allowing some photons to leak through,
creating the laser beam.
The difference between an everyday light bulb
and the light of a laser is temporal and spatial coherence.
In a light bulb, the light emits photons
equally in all directions. The light is random, out of
phase, and multiwavelength. A laser emits coherent
light, so photons travel in identical direction
and phase. A laser is also monochromatic, i.e., light
of one wavelength. Another significant difference
is that laser light is highly collimated, which means
the laser beam can travel long distances with minimum
spreading.
The laser gain medium through which the photons
travel to become amplified or magnified can
vary. The source of power used to excite the medium,
achieving population inversion, can be the result
of a chemical reaction, an electric discharge,
a flash lamp, another laser, or some other excitation
mechanism. The type of the lasing medium
determines the type of laser. The three categories
in which lasers are usually classified are chemical,
gas, and solid state. A laser can also be continuous
wave (CW) or pulsed. Each type of laser produces a
specific wavelength of radiation. It is important to
note that different wavelengths of radiation interact
with the atmosphere differently. A laser beam is
either scattered or absorbed by air molecules, water
vapor, or dust. Longer wavelengths scatter less and
are absorbed more than shorter wavelengths; our
sky is blue because the shorter blue wavelengths
of light are scattered more than the longer wavelengths.
1 Gamma rays are so highly absorbed that
they cannot propagate more than a few feet in the
air. Thus, some laser wavelengths are scattered or
absorbed more than others. This makes laser wavelengths
with minimum absorption better for use
as directed-energy weapons since they propagate
through the atmosphere better than others. For example,
the carbon-dioxide (CO2) laser is strongly
absorbed by water vapor, so any use near the ocean
will be negatively affected. Near-infrared and infrared
lasers have shorter wavelengths with negligible
absorbance. The optimal laser choice, therefore,
would be a wavelength-tunable laser that could
vary depending on the atmospheric conditions,
such as the free-electron laser (FEL).
Lasers have affected almost every type of modern
technology. Most laser technologies use low
Figure 1. Electromagnetic Spectrum
28
Directed Energy
Past, Present, and Future
powers and were mastered very quickly. They are
used in many everyday appliances, such as scanning/
inventory devices, surgery/medicine, hair removal,
presentation pointers, law enforcement,
ranging and sighting devices, welding applications,
and much more. Using a laser as a weapon has
many advantages. For example, a laser:
• Is unaffected by gravity
• Causes minimal collateral damage
• Travels at the speed of light
• Can precisely reach far distances
• Is capable of causing a specific,
predetermined amount of damage to targets
The theory behind these capabilities makes the
laser weapon a prime choice in multiple engagement
scenarios. However, developing lasers with
higher powers to use as a weapon has proven more
difficult than first considered.
Military Laser History
and Laser Types
Generally, a laser weapon is any laser used
against the enemy with more than 50 kW to megawatts
of power. This is much greater power than
commercial lasers. Accordingly, they have greater
support needs, including:
• Environmental and personnel safety
• Mirror coatings
• Chilling requirements
• Power requirements
• Laser fuel storage
• Alignment and tracking requirements
In 1960, the very first laser (a ruby laser) was
built, producing minimal power. This event was
followed by many other laser technology developments.
The first chemical laser, hydrogen fluoride
(HF), was built in 1965, producing 1 kW. It was
then that DoD became interested in researching
and developing a more powerful laser for weapon
applications. Subsequently, in 1968, the Defense
Advanced Research Projects Agency (DARPA)
Baseline Demonstration Laser produced 100 kW,
and the Navy-ARPA Chemical Laser (NACL) produced
250 kW in 1975. The very first laser is depicted
in Figure 2.
Solid-State Lasers (SSLs)
An SSL uses a solid lasing medium, such as a
rod made up of glass or crystal, or a gem, like the
ruby laser. Along with the rod or host material is
an active material, such as chromium, neodymium,
erbium, holmium, or titanium. Chromium is
the active material used in ruby lasers. Neodymium
is the active material in the most widespread
applications. A flash lamp, arc lamp, or another
laser carries out the optical cavity pumping to
achieve population inversion and stimulate the laser
beam. The Neodymium Yttrium-aluminum
garnet (Nd:YAG) laser is a popular SSL. It operates
at a 1064.5-nm wavelength and can be pulsed
wave or CW. A great advantage of these lasers is
that the wavelength and pulse duration can be varied
considerably.1 The power level can reach up to
megawatts when using Q-switching to achieve
Figure 2. First Ruby Laser Developed in 1960 by Research Physicist Theodore H. Maiman
Power
Supply
Switch
Ruby Crystal
Components of the First Ruby Laser
100% Reflective Mirror Quartz Flash Tube
Polished Aluminum
Reflecting Cylinder
95% Reflective Mirror Laser Beam
29
History of Laser Weapon Research
short pulse lengths. The various interactions with
the laser and different crystalline materials can
double the electromagnetic frequency, which will
halve the wavelength, bringing the laser beam into
the visible range, 532 nm (green). The wavelength
can be further divided down three or four times,
making this laser range from the near-infrared to
the ultraviolet wavelength. These lasers are commonly
used for rangefinders and target designators.
Other advantages of these lasers are that they
can be made very small, rugged, cheap, and battery-
powered. Characteristics of SSLs are shown
in Table 1.
Chemical Lasers
A chemical laser uses chemical reaction to create
population inversion in the lasing medium. One
example is the Mid-Infrared Advanced Chemical
Laser (MIRACL) developed in the mid-1980s. The
MIRACL is a continuous-wave, mid-infrared (3.8-
μ) laser. Its operation is similar to a rocket engine in
which a fuel (ethylene, C2H4) is burned with an oxidizer
(nitrogen trifluoride, NF3).2 Free, excited fluorine
atoms are among the combustion products.
Just downstream from the combustor, deuterium
and helium are injected into the exhaust. Deuterium
(U) combines with the excited fluorine to create
excited deuterium fluoride (DF) molecules,
while the helium stabilizes the reaction and controls
the temperature.2 The laser’s resonator mirrors
are wrapped around the excited exhaust gas,
and optical energy is extracted. The cavity is actively
cooled and can be run until the fuel supply is exhausted.
The laser’s megawatt-class output power
can be varied over a wide range by altering the fuel
flow rates and mixture. The laser beam in the resonator
is approximately 21-cm high and 3-cm wide.
Beam-shaping optics are used to produce a 14- ×
14-cm (5.5- × 5.5-inch) square, which is then propagated
through the rest of the beam train. Diagnostics
for evaluating the beam shape, absolute power,
and intensity profile are used on each firing of the
laser. The beam can be directed to a number of different
test areas or to the SEA LITE beam director.2
The DF Chemical Laser (MIRACL) and the Sea Lite
Beam are shown in Figure 3.
The laser and beam director were integrated
in the mid-1980s at the Army’s High Energy Laser
Systems Test Facility (HELSTF) at White Sands
Missile Range, New Mexico. Following integration,
extensive tests were conducted in the areas of:
• High-power optical components and beampath
conditioning
• Beam-control techniques
• High-power propagation
• Target damage and vulnerability
• Target lethality3
Tests supported by the MIRACL included:
• The high-power dynamic with flying drone
(BQM-34)
• Conventional defense initiative with flying
drone
• High-velocity target test with Vandal
Missile
• High-altitude target tests with flying drone
• Missile and plume tests using the 1.5‑m
aperture
• Radiometrically calibrated images and
spectral radiometry
These successful tests are what made many believe
that MIRACL was the first and only successful
laser weapon system developed by the Navy
prior to the Navy Laser Weapon System (LaWS).3
Gas Lasers
Gas lasers are a type of chemical laser that uses a
pure gas or gas mixture to produce a beam. The typical
gas laser contains a tube with mirrors on each
end. One end transmits the beam out of the cavity.
Most gas lasers use electron-collision pumping,
with electric current passing through the gas. Some
use optical pumping with flash lamps. The helium
30
Directed Energy
Past, Present, and Future
neon (HeNe) laser is a very well-known gas laser. It
produces a bright red, continuous beam of low power.
It is used for many applications such as scanning,
alignment, measurement, and stabilization devices.
University students use them in optical training laboratories.
Many larger lasers contain a HeNe inside
the beam path, as well to verify beam alignment.
HeNe lasers are fairly cheap and very rugged. They
can work continuously for thousands of hours.
CO2 lasers are in the gas family. These lasers
were the earliest, truly high-power lasers and have
been among the most crucial lasers used in R&D
for high-energy laser (HEL) weapons. In industry,
the more powerful CO2 lasers are used for welding,
drilling, and cutting. There are many different
types of CO2 lasers that vary in pumping design.
CO2 lasers work by burning a hydrocarbon fuel
(like kerosene or methane) in oxygen or nitrous
oxide. The hot gas flows through a comb of nozzles,
expands quickly, and achieves population
inversion. The gas then flows through an optical
resonator at supersonic speeds, resulting in stimulated
emission and a laser beam.4
CO2 lasers have been researched for use as
nonlethal weapons. The wavelength produced by a
CO2 laser is also absorbed by glass. For example,
the beam does not penetrate a windshield. Thus,
shooting a CO2 laser at a vehicle’s windshield could
deter a threat by damaging the windshield or by
causing a dazzling effect to reduce the visibility of
the driver, while not reaching the driver at all.
The gas dynamic laser (GDL) is a CO2 laser
based on differences in relaxation velocities
of molecular vibrational states. The laser medium’s
gas has properties such that an energetically
lower vibrational state relaxes faster than a higher
vibrational state; thus, a population inversion is
achieved in a particular time. A GDL is shown in
Figure 4. Characteristics of chemical and gas lasers
are identified in Table 2.
Fiber Lasers
Modern fiber lasers are considered SSLs. They
are powered by electricity, making them highly
mobile and supportable on the battlefield. Fiber lasers
use optical fibers as the gain media. In most
cases, the gain medium is a fiber doped with rare
earth elements—such as erbium (Er3+), neodymium
(Nd3+), ytterbium (Yb3+), thulium (Tm3+),
or praseodymium (Pr3+)—and one or several laser
diodes are used for pumping. Optical fibers have
been used in industry, specifically for telecommunications
to transport information via light. With
developing technology, optical fibers have become
high-energy, powerful laser energy sources. Fiber
lasers have proven to have much benefit over traditional
SSLs. They are rugged and do not require
a clean room to operate or maintain, as most other
laser systems do. They also are extremely efficient;
however, they cannot operate well in all
weather conditions. One example is the IPG CW
fiber lasers, which produce moderate beam quality,
causing damage to materials and components
through thermal heating and burn-through. The
Naval Surface Warfare Center, Dahlgren Division
(NSWCDD) purchased eight commercially available
5.5-kW IPG lasers, where two multimode
(seven fibers) lasers are housed per cabinet. This
type of laser is easy to mount due to the flexible fibers.
The IPG CW Fiber Laser is shown in Figure 5.
Miscellaneous Lasers
There are other types of lasers that do not necessarily
fit into the chemical or solid-state categories.
These include semiconductor lasers, used in:
• Television • Radios
• CD Players • Telecommunications
• Dye Lasers • Medicine
• Spectroscopy • Astronomy
There also are the FELs mentioned previously.
The FEL is a completely different breed of laser.
Figure 3. DF Chemical Laser (MIRACL) and Sea Lite Beam
DF Chemical Laser (MIRACL) Sea Lite Beam
31
History of Laser Weapon Research
Figure 4. A laser engineer inspects a gas dynamic laser after installation
aboard an NKC-135 airborne laser laboratory.
Figure 5. IPG CW Fiber Laser System
32
Directed Energy
Past, Present, and Future
bed and was used to provide the first demonstrated
kill of an operational missile in 1978.
Alpha HF—Built for Strategic Defense Initiative
(SDI) Space-Based Laser (SBL)
Alpha, an HF laser, was the baseline technology
for the SBL readiness demonstration (SBLRD). In
1991, the Alpha laser demonstrated megawatt-class
power levels similar to MIRACL, but in a low-pressure,
space operation environment. Alpha demonstrated
that multimegawatt, space-compatible
lasers can be built and operated.
Tactical High-Energy Laser (THEL)
The THEL is a DF chemical laser developed
by the Army. In 2000 and 2001, THEL shot down
28 Katyusha artillery rockets and 5 artillery shells.
On 4 November 2002, THEL shot down an incoming
artillery shell and a mobile version successfully
completed testing. Subsequently, during a test conducted
on 24 August 2004, the system successfully
shot down multiple mortar rounds. These tests represented
actual mortar threat scenarios in which
both single mortar rounds and salvo were tested
and intercepted. A photograph of THEL is shown
in Figure 6.
Advanced Tactical Laser (ATL)
The ATL uses a closed-cycle, chemical oxygen-
iodine laser (COIL) with beam control, which
lases at a 1.315-μ wavelength. The ATL was developed
to engage tactical targets from a moving platform
at ranges of approximately 10 km. It can spot
a 10-cm-wide beam on a distant target for up to
100 shots. This beam has enough power to slice
through metal at a distance of 9 miles. The aircraft
equipped with the ATL weapon system is shown in
Figure 7.
A specially modified 46th Test Wing NC-130H
aircraft equipped with the ATL weapon system
fired its laser while flying over White Sands Missile
Range, New Mexico, successfully hitting a target
board located on the ground. Equipped with a
chemical laser, a beam control system, sensors, and
weapon-system consoles, the ATL is designed to
damage, disable, or destroy targets with little or no
collateral damage.
Airborne Laser (ABL) (CO2) Chemical Oxygen
The ABL C-130H aircraft contains three laser
beam systems: the powerful killing primary laser
beam (ATL), a set of illuminating laser beams for
infrared surveillance and high-speed target acquisition,
and a beacon laser for a high-precision laser
target tracking beam control system. The primary
It uses electrons to create photons instead of some
type of matter. The electrons are produced, collected,
and directed to flow at very high speeds. To
excite the electrons, they are passed through a “wiggler,”
i.e., a series of magnets positioned in such a
way that electromagnetic radiation (light) is produced
when the electrons release photons. The significant
feature of the FEL is that the wavelength
can be controlled, depending on the magnet positions
and the speed of electrons. This versatility
makes the FEL particularly appealing. However,
the footprint of the FEL system is too large to transform
into any ideal defense weapon. The Jefferson
Laboratory in Newport News, Virginia, has an FEL
and continues to maintain and test its capabilities
and effects. This laser was new to the military in the
late 1990s and received funding to optimize its capabilities
and integrate as a defense weapon. Although
great progress has been made, the required
footprint could be much larger than desired. Consequently,
some interest in the FEL has shifted to
other HEL sources.
Many scientists foresee the probability of using
the laser as a global weapon. This possibility is
proven through basic laws of physics. Actually implementing
such a system, however, can be more
difficult. The global weapon concept uses a base
laser with optics and is strategically positioned in
space to be able to direct its beam multiple places
on Earth at the speed of light with maximum
power levels. This idea faces significant problems,
including appropriate power levels, optics to handle
such levels, propagation issues, and the ethical
measures behind any global weapon. Still, the idea
presents interesting possibilities.
Laser Weapon Development
The following paragraphs highlight some of
the laser weapons that have been successfully developed
over the last 40 years.
Baseline Demonstrator Laser (BDL) Hydrogen
Fluoride (HF)
In 1973, TRW Inc. produced the world’s first
high-energy chemical laser, the Baseline Demonstration
Laser, for DoD. After that, TRW Inc. produced
and demonstrated six more HELs, including
the MIRACL (1985) and Alpha (2000), the nation’s
only megawatt-class chemical lasers.
Navy-ARPA Chemical Laser (NACL) HF
The NACL was mated with the Navy Pointer
Tracker at TRW Inc.’s San Juan Capistrano, California,
facilities in the 1975–978 time frame. This
was the Navy’s initial, integrated HEL system test
33
History of Laser Weapon Research
Figure 6. Tactical High-Energy Laser (THEL)
laser beam is generated by a megawatt COIL located
at the rear of the fuselage. The high-power laser
beam travels towards the front of the aircraft
through a pipe. The pipe passes through a Station
1000 bulkhead/airlock, which separates the rear
fuselage from the forward cabins. The high-power
beam passes through the fine beam control system
mounted on a vibration-isolated optical bench.
Beam pointing is achieved with very fast, lightweight
steering mirrors, which are tilted to follow
the target missile. The ABL finally destroyed a target
while in flight at White Sands Missile Range in
August 2009. The 12,000-lb ABL locked onto an unspecified
ground target and fired the laser, making
the target disappear. Although it was successful at
this demonstration, using the ABL in the fleet has
fallen out of favor due to affordability and technology
problems. The ABL is shown on an aircraft in
Figure 8.
Joint High-Power Solid-State Laser (JHPSSL)
In hopes of accelerating SSL technology for
military uses, work is being performed by the
U.S. Army Space and Missile Defense Command
(SMDC) and the Army Test and Engineering Center
at White Sands Missile Range. The technology
uses an electric laser diode to shoot light into 32
garnet crystal modules that combine to create “laser
amplifier chains” producing 15 kW. By using seven
chains and by combining multiple beams, they
have reached 105 kW in the laboratory operating
in a clean room. The program’s ultimate goal is for
a laser system to reach high powers outside a laboratory
environment. Fielding such a delicate optical
structure can present significant barriers for this
laser system. Nonetheless, it will be a great accomplishment
for a variety of force protection missions,
such as shipboard defense against cruise missiles.
The JHPSSL system is shown in Figure 9.
Navy Laser Weapon System (LaWS)
The Navy LaWS is the most recent, successful
laser weapon. It uses an electric-fiber laser design,
avoiding the problems that chemical lasers
present. In the summer of 2009, the Naval Sea
Systems Command (NAVSEA)—with support
from NSWCDD—successfully tracked, engaged,
and destroyed unmanned aerial vehicles (UAV)
Figure 7. 46th Test Wing NC-130H Aircraft Equipped with the
ATL Weapon System
34
Directed Energy
Past, Present, and Future
Figure 8. Airborne Laser (ABL)
Figure 9. Joint High-Power Solid-State Laser (JHPSSL) System
35
History of Laser Weapon Research
in flight at the Naval Air Warfare Center, China
Lake, California. A total of five targets were engaged
and destroyed during the testing, which
represented a first for the U.S. Navy. The laser was
fired through a beam director on a Kineto Tracking
Mount similar to the Sea Lite beam director.
The system used fiber lasers in the configuration
and has proven to be a rugged and dependable
choice for the warfighter’s needs. A photograph of
LaWS is shown in Figure 10.
Laser weapon systems development in recent
years has taken giant steps forward. Dedicated
R&D has advanced the state of the art considerably.
What was unimaginable only a few short
years ago, today has become reality. Accordingly,
given continued R&D, warfighters in the near
term will have additional weapon options to
choose from for dealing with a spectrum of threats
and contingencies.
References
1. Beason, Doug Ph.D., The E-Bomb: How America’s New Directed
Energy Weapons Will Change The Way Future Wars Will Be Fought,
Da Capo Press, 2005.
2. Pike John, Mid-Infrared Advanced Chemical Laser (MIRACL), FAS
Space Policy Project, Military Space Programs, March 1998, http://
www.fas.org/spp/military/program/asat/miracl.htm
3. Albertine, John R., “History of Navy HEL Technology Development
and Systems Testing,” (Proceedings Paper), Proc. SPIE,
Vol. 4632, Laser and Beam Control Technologies, Santanu Basu
and James F. Riker, Eds., pp. 32–37.
4. Anderberg, Major General Bengt and Dr. Myron L. Wolbarsht, Laser
Weapons: The Dawn of a New Military Age, Plenum Press, New
York, 1992.
Figure 10. Navy Laser Weapon System (LaWS)
36
Directed Energy
Past, Present, and Future
Laser Weapon System (LaWS) Adjunct to the
Close-In Weapon System (CIWS)
By Robin Staton and Robert Pawlak
37
Laser Weapon System (LaWS) Adjunct to the
Close-In Weapon System (CIWS)
The Naval Sea Systems Command (NAVSEA)
established the Navy Directed Energy Weapons
Program Office in January 2002 and subsequently
chartered the Directed Energy and Electric Weapon
Systems Program Office (PMS 405) in July
2004.1, 2 Its mission is to change the way the Navy
fights in the 21st century by transitioning directedenergy
and electric weapon technology, providing
the warfighter with additional tools to fight today’s
and tomorrow’s wars. In support of this mission,
the Laser Weapon System (LaWS) was developed,
which potentially adds a suite of tools for offensive
and defensive operations.
The LaWS program is managed by PMS 405 in
cooperation with the Program Executive Office Integrated
Warfare Systems (PEO IWS), the Navy’s
Close-In Weapon System (CIWS) manager. A multilaboratory/
multicontractor organization led by
the Naval Surface Warfare Center, Dahlgren Division
(NSWCDD), has been executing the program
since March 2007. The potential advantages of a lethal,
precise, speed-of-light weapon are numerous
and have been recognized for many years. However,
even in light of these advantages, there are realities
that need to be considered for any program to
succeed to the point that an actual system is placed
in the hands of the warfighters.
The LaWS system offers viable solutions for an
important subset of threats while fitting into acceptable
size and weight constraints. In addition,
since LaWS is a fully electric laser, the operation
of the system does not require the handling and
storage of hazardous chemicals, such as hydrogen
fluoride. As will be discussed later, due to the incorporation
of high levels of commercial off-theshelf
(COTS) technology, the LaWS system also
has advantages for topside design, logistic supportability,
and cost. Thus, LaWS could enable the
Navy to address adverse cost-exchange situations,
which can occur when engaging proliferated inexpensive
threats such as unmanned aerial vehicles
(UAVs).
Background
Based on mission analysis work conducted prior
to the LaWS program and additional work done
as part of the program, it became clear that a number
of factors require careful consideration. First, a
high-power laser is not likely to replace anything
on a ship in the next 5 years. For a new system to
be added to a ship, a high-power laser must supplement
current capabilities or provide new capabilities
that clearly justify its addition. Second, because
a laser provides such a diverse set of capabilities,
conventional air-to-air warfare (AAW) models—
such as the Fleet AAW Model for Comparison of
Tactical Systems (FACTS), Antiair Warfare Simulation
(AAWSIM), and Extended Air Defense Simulation
(EADSIM), as well as other existing AAW
analysis approaches—are not well suited for showcasing
current or near-term laser-weapon capabilities.
While they can (and have) been used for
laser-weapon analysis, their application to a megawatt-
class laser that could “instantly” destroy boats
or cruise missiles (akin to missile engagements) is
a more straightforward application of the existing
models and techniques.
In November 1995, the Chief of Naval Operations
requested that the National Research Council
initiate, through its Naval Studies Board, a
thorough examination of the impact of advancing
technology on the form and capability of the naval
forces to the year 2035. A major observation of the
report is quoted below:
Numerous laboratory and field-test versions
of laser weapons have been developed
and demonstrated. They have worked as
expected and demonstrated suitable lethality
against their intended targets. The primary
factors that have inhibited the transition of
the technology into deployed systems are size
and weight. Generally, the conceptual designs
of laser weapons that are scaled for combat
effectiveness are too large to be appealing to
users; conversely, weapons that are sized for
platform convenience generally lack convincing
lethality.3
Subsequently, an August 2006 U.S. Air Force
(USAF) Scientific Advisory Board Study examined
the increasing threat posed by UAVs in some detail.
Key conclusions included:
No single system can completely address
the UAV threat. A single sensor solution
is inadequate because of the size and speed
challenges presented by small UAVs. A single-
weapon-layer solution fails to provide for
adaptability to multiple scenarios or adequate
probability of kill.
Key recommendations of the USAF Advisory
Scientific Board Study included:
Develop and field longer-term upgrades
to counter increased UAV threats. They
include:…a small, multimission air/air and
air/ground weapon; and directed-energy air
defense weaponry.4
38
Directed Energy
Past, Present, and Future
In addition to the USAF Scientific Advisory
Board study, a 2007 OPNAV Deep Blue Study
noted the potential advantage of nonkinetic defeat
options and recommended that the Navy accelerate
development of nonkinetic systems to include
high-energy lasers (HELs).5
The laser power levels likely to be available in
the near term, within reasonable size and cost, are
in the neighborhood of 100 kW of radiated power.
While this power level is not adequate to engage
certain threats, such as cruise missiles or
tactical ballistic missiles at tactically useful ranges,
there is still a wide spectrum of threats that could
be engaged at ranges that are comparable to many
current ship-defense weapons, including minorcaliber
guns and small missiles. The spectrum of
threats includes:
• UAVs
• Missile Seekers
• Intelligence, Surveillance, and
Reconnaissance Systems
• Rockets
• Man-Portable Air-Defense Systems
(MANPADS)
• Mortar Rounds
• Floating Mines
• Artillery Rounds
LaWS on CIWS
The Mk 15 Phalanx CIWS can often detect,
track, and (sometimes) identify potential
threats at ranges well outside the effective
range of the 20mm gun. These functions are
accomplished using the search/track radar system
and the Phalanx Thermal Imager (PTI).
When added to the Phalanx mount and pointed
in the same direction as the gun (see Figure
1), a laser weapon could potentially add
a number of useful functions and capabilities
to the mount, but technical challenges must
be overcome. Preliminary analyses of the mechanical
characteristics of the mount suggest
that the additional weight that could be added
to the mount must be kept under approximately
1200–1500 lb. Additionally, it is highly
desirable that the addition of the laser weapon
not substantially affect the train/elevation
operation of the mount in angle, peak velocity,
or acceleration. Consequently, use of rapidly
evolving fiber laser technology appears to be
the only currently foreseeable path to adding
significant laser energy directly to the mount
within these constraints.
One major driver in the genesis of the
LaWS system was the availability of relatively
low-cost COTS fiber-optic lasers. Because these fibers
are flexible, they obviate the need for an expensive
coude path system (an optical mirror/lens
assembly that turns radiation 90° and may also support
rotation of the beam director), thus allowing
the use of low-cost mount technology, as well as the
retrofitting of the system on existing mounts. The
last factor is extremely important because of the
scarcity of topside real estate on today’s ships. These
fiber-optic lasers do have limitations in terms of
power, although power levels are growing with advancing
technology. The reality today is that, in order
to get adequate lethality from a system based on
this technology, the use of a beam-combining apparatus
utilizing several individual fibers is necessary.
(Figure 2 depicts combining multiple fibers in
the same beam director.) Furthermore, a smaller
beam size is desirable since this drives power density
up—ncreasing the performance required for the
tracking and pointing elements of the system. Thus,
a high-resolution fine track sensor is needed, as well
as an appropriately robust line-of-sight control.
A Potential Suite of Laws-
Related Capabilities
Potential added capabilities that an adjunct
LaWS could contribute to the total ship combat
system are briefly outlined in the following subsections.
Figure 1. LaWS Mounted on CIWS
39
Laser Weapon System (LaWS) Adjunct to the
Close-In Weapon System (CIWS)
Target Identification, Tracking, and Intent
Determination at Range
The optics that would be added for the laser
to detect and track targets in support of a laser engagement
would immediately contribute additional
capabilities to the entire ship combat system even
without operating the laser. A laser-gated illuminator,
part of the tracking system, significantly increases
the signal to the background level of tracked
targets and provides good range resolution as well.
The additional sensitivity and angle resolution provided
by the LaWS optics would allow the identification,
precision tracking, and “monitoring” (at
high resolution) of potential threats or vehicles of
interest at substantially greater ranges than could
be achieved by the PTI alone. The Phalanx radar,
or another source, would have to provide an initial,
accurate cue to facilitate initial acquisition. Once acquired,
the target could be examined and monitored
with high resolution at range. This capability could
make a substantial contribution to identification efforts—efforts to determine intent and potentially
even to documenting target behavior to resolve issues
with rules-of-engagement doctrine. It is widely
recognized that rules-of-engagement issues, such
as threat identification and intent determination,
are among the most difficult problems faced by ship
commanding officers.
Unambiguous Warning at Range
If a fraction of the laser energy is routed through
a frequency-doubling crystal, an intense, visible
beam can be projected to significant ranges to provide
a clear, unambiguous warning that a potential
target is about to be engaged unless an immediate
change in behavior is observed. This feature also
would have utility for dazzling aircraft, surface vehicle,
or submarine sensors, and would provide exceptional
long-range, unambiguous warning to
boats or aircraft at night.
Figure 2. Cutaway View of the LaWS Beam Director
40
Directed Energy
Past, Present, and Future
Sensor Destruction at Range
Many electro-optical (EO) sensors are quite
susceptible to damage by laser energy in the fiberlaser
band as is the case with infrared (IR) missile
seekers with germanium optics. The frequencydoubling
feature described in the previous paragraph
also would be useful to ensure that a band-pass
filter at a single frequency could not be applied as
an effective countermeasure. The intent here would
be to destroy the seeker or imager at ranges well beyond
those achievable by the Phalanx 20mm gun.
Other examples include intelligence, surveillance,
reconnaissance, and targeting sensors on UAVs or
unmanned surface vehicles (USVs).
IR Missile Assist at Range
Many targets of interest—including UAVs,
USVs, and small boats—are somewhat “marginal”
from a target-signature standpoint, particularly at
the maximum range of existing IR guided missiles
such as the FIM-92 Stinger, the FGM-148 Javelin,
the RIM-116 RAM, and the AIM-9X Sidewinder.
The CIWS laser adjunct could potentially “correct”
this situation by laser heating target vehicles to enhance
their signature to existing IR guided missiles.
Note that this is NOT “conventional” semiactive-laser
(SAL) guidance—he LaWS is not a coded illuminator,
nor do the seekers in question rely on
this coding. The IR missiles would be unmodified
weapons taken from inventory. The LaWS adjunct
would simply contribute laser energy that heats
the target and enhances its signature for the missile.
While, at the ranges envisioned, this laser heating
alone would not be sufficient to “kill” the target,
it could definitely heat the target. It should also be
noted that the laser “illumination” could potentially
be used to preferentially select a specific target
from among a group of targets for engagement by a
missile. It is expected that these engagements could
occur at ranges of two to four times the effective
Phalanx gun engagement ranges. Use of LaWS in
this manner would be exactly analogous to the use
of a SAL designator for a SAL guided missile, such
as the AGM-114 Hellfire. It is expected that similar
rules of engagement would apply.
Direct Target Destruction by Laser Heating
Some threats are known to be vulnerable to direct
destruction by the application of laser energy
for an appropriate period of time. The currently
envisioned system would be able to destroy a subset
of naval threats at ranges comparable to, and
in some cases greater than, the ranges achieved
with modern, stabilized guns using EO fire control
systems and modern ammunition. In the case
of a LaWS adjunct, the addition of the laser would
open new options for a firing/engagement doctrine
and would be expected to conserve CIWS rounds
for use on threats that are not appropriate for this
laser power level. While the laser is often quoted as
having an “unlimited magazine,” the true number
of threats that can be engaged by the laser in any
period of time is limited by the required illumination
time and by the time required to evaluate a
kill and transition to the next target. Thus, for particular
target velocities and numbers, the “effective
laser magazine” might be added to the CIWS magazine
to increase the total number of targets engaged
by the combined system.
LaWS Accomplishments
A government/industry team, led by government
technical personnel, have achieved significant
accomplishments since the start of the LaWS
program in 2007; specifically, the team:
• Conducted mission analyses
• Developed threat lethality estimates
• Performed industry surveys for critical components
and subsystems
• Performed extensive trade-off analyses
• Designed a prototype system
• Constructed the system—the prototype director
and mount (see Figure 3)
• Performed numerous laboratory-based tests
of subsystems and the complete prototype
• Validated system operation with a full-up
field test at high power using BQM-147A
UAV target drones
Additionally, the team was able to minimize the
cost of the prototype by leveraging hardware that
had already been developed or procured for other
applications, including an L3-Brashear tracking
mount, a 50-cm telescope, and high-performance
IR sensors. Some components were commercially
procured, such as the 5.4-kW fiber lasers. Figure 4
shows three laser cabinets, containing two lasers
apiece, resulting in a total power output of 32.4 kW.
Other components, such as the beam combiner
and much of the system software required for operation
and target tracking, had to be specifically
designed, fabricated, and tested.
The LaWS program achieved a highly successful
field test/demonstration in June 2009 when the
prototype successfully engaged and destroyed five
drone targets at tactically significant ranges at the
China Lake, California, test range (see Figure 5).
Additional Work to be Done
Since the LaWS prototype sits on a dedicated
gimbal, much additional work needs to be done
41
Laser Weapon System (LaWS) Adjunct to the
Close-In Weapon System (CIWS)
Figure 3. Photo of LaWS During Testing at the Naval Weapons Center, China Lake
Figure 4. IPG Laser Cabinets
42
Directed Energy
Past, Present, and Future
Figure 5. BQM-147A During LaWS Engagement
to place the weapon on the CIWS mount. The
latter would require new control systems and
optomechanical hardware for line-of-sight stabilization.
Other aspects of the shipboard environment
are also more stressful, and future mission
areas may require an increasingly robust capability
to deal with optical turbulence and the
high-clutter environment of the ocean surface.
Additional laser power might also be required.
These modifications, depending on the level
of capability desired, will require engineering
modifications to the system. Engineering analysis
and design to address these issues is currently
underway at NSWCDD.
While the aforementioned engineering issues
are important to address, there are additional technical
issues that have yet to be analyzed. These issues
are concerned with the potential utility of
the system. Indeed, most of the detailed technical
analyses and experiments performed thus far
have focused on target destruction, with some effort
expended on the issue of seeker damage/destruction.
Developing credible lethality estimates
for various potential threat targets is clearly very
important, but one consequence of the lethality focus
is that necessary, detailed, defendable technical
analysis, analytic model development, and experiments
have not been performed to explore the other
functions/features that a CIWS Adjunct LaWS
might provide to the overall ship combat system.
Some of these contributions might become “routine”
if the LaWS were available.
For example, a hard-kill engagement of a target
by a Navy shipboard weapon is a relatively rare
event, even during wartime conditions. On the other
hand, ships in combat zones—nd elsewhere—constantly have the problem of detecting potential
threats, tracking them, identifying them, determining
their intent, and providing warning. Thus,
use of the LaWS system, at less than its full lethal
potential, could become a daily, standard practice.
It is still not clear how these potential benefits and
capabilities could be measured or quantified to the
satisfaction of key decision makers.
Likewise, other potential advantages of laser
weapons—uch as the potential for precision engagement,
covert engagement, fire starting, graduated
lethality, low cost per shot, and “unlimited”
43
Laser Weapon System (LaWS) Adjunct to the
Close-In Weapon System (CIWS)
magazine—have not been subjected to rigorous
technical analysis for feasibility, utility, and practicality.
These investigations need to be performed
and are gradually being addressed within the
LaWS program.
Although the Phalanx CIWS system is currently
installed on a number of Navy surface
warships—either a single mount or a double
mount—there are still significant numbers of
ships that do not have a Phalanx system. It is highly
desirable to make LaWS potentially available to
virtually any ship that could benefit from the enhanced
capabilities.
While the technical issues associated with the
addition of LaWS to the Phalanx CIWS will be
somewhat different from those associated with
adding a LaWS system to other weapon systems—
or the provision of a “stand-alone” LaWS—hey do
not appear to be insurmountable. For example, a
LaWS beam director might be added to the stabilized
Mk 38 Mod 2 25mm gun or the Mk 46 Mod 2
30mm gun. A LaWS beam director might be added
to (or even substituted for) the Mk 46 EO Sight
on DDGs or added to the trainable RAM launcher.
Other options may exist as well.
The issue of defending combat logistics force
ships, joint sealift ships, and certain support vessels
from attacks from small boats or UAVs is also relevant.
These ships often have little or no installed defensive
capabilities for potential terrorist or pirate
threats, and expeditionary security detachments do
not have decisive warning or engagement capability.
In addition, there are severe limitations placed
on concept of operations (CONOPS) and rules of
engagement due to the limited objectives/limited
means of the various missions.
A system such as LaWS could provide graduated
lethality from warning to destruction. It also
could provide additional applications to minimize
risk to sea base platforms and enhance sea shield
capabilities against nonstate threats. If acceptable
rules of engagement can be established, the advantages
of graduated lethality might be extended to
ships in port or entering/exiting harbors.
While considerable additional work needs to
be done to produce a tactical system, the LaWS
program’s recent demonstration of capability provides
strong evidence that a useful, tactical system
could be produced within reasonable cost, volume,
weight, and power constraints to provide the warfighter
with a suite of additional tools to fight today’s
and tomorrow’s wars.
References
1. NAVSEA Notice 5400, Ser 09B/240, “Establishment of the Navy Directed
Energy Weapons Program Office (PMS 405),” 4 January 2002.
2. NAVSEA Instruction 5400.101, Ser SEA 06/058, “Directed Energy
and Electric Weapon Systems Program Office (PMS 405) Charter,”
21 July 2004.
3. Technology for the United States Navy and Marine Corps 2000–
2035: Becoming a 21st-Century Force, Naval Studies Board, National
Research Council, National Academy Press, 1997, Volume
5: Weapons, Chapter 6, “Navy and Marine Corps Applications for
Laser Weapons.”
4. Report on the Air Defense Against Unmanned Vehicles, USAF Scientific
Advisory Board, SAB-TR-06-01, August 2006.
5. “Counter Unmanned Aerial Systems (UAS),” OPNAV Deep Blue
Report 08-01, August 2007.
44
Directed Energy
RDT&E, Acquisition, and
Warfare Management
The Acquisition Challenge Associated
With Directed-Energy RDT&E
By Mike Kotzian
An already tense situation quickly escalated. Everyone within the combat information
center of the Navy’s newest all-electric ship suddenly realized that two surfaceskimming,
antiship missiles were bearing down on their destroyer. With less than 30 seconds
to impact, the tactical warfare officer gave the order to fire. Seconds later, the first
surface-skimming missile vanished from all tracking consoles. Another order to fire
closely followed, and the second missile threat was also destroyed. Consequently, within
a matter of 10 seconds from threat recognition to threat elimination, the Navy’s newest
all-electric ship was able to destroy two incoming threats by using one of the Navy’s
newest weapon systems—he free-electron laser.
Does this scenario of a Navy all-electric ship, employing a high-energy laser to
shoot down enemy surface-skimming antiship missiles, sound like inevitable reality or
unattainable science fiction? For scientists and engineers working on directed-energy
systems for the Navy, the answer does not lie solely in the advanced technical challenges
associated with developing directed-energy weapons. Rather, the answer also lies in
how well scientists and engineers understand and adhere to the Department of Defense’s
(DoD’s) Defense Acquisition Management System (DAMS) framework governing the
development of new weapon systems.
Evolution of Defense Acquisition
The way in which DoD identifies needs and subsequently develops, tests, procures,
and sustains weapon systems has evolved over time. Today’s acquisition foundation can
be traced back to the Packard Commission report in 1986, where many of this report’s
recommendations became part of the Goldwater-Nichols DoD Reorganization Act of
1986. This evolution continued along three tracks:
1. Requirements moving from threat-based to capability-based
2. The resource allocation system adding execution reviews with concurrent program
and budget reviews
45
The Acquisition Challenge Associated
With Directed-Energy RDT&E
3. The acquisition process attempting to incorporate
a more flexible and tailored process
These three tracks form the Defense Support
System organizational structure: the Joint Capabilities
Integration and Development System (JCIDS)
process; the Planning, Programming, Budgeting,
and Execution (PPBE) process; and the DAMS
process, respectively. These three processes operate
as “systems of systems” and are referred to as
the “Big A” acquisition process shown in Figure 1.1
While all three of these phases hold their own
level of importance, the major focus for scientists
and engineers at research and development (R&D)
facilities is the “Little a” acquisition process. It is
this “Little a” acquisition process, where the rules
and processes are found, that governs how DoD
goes about developing a new materiel solution to
a validated warfighter requirement. These rules
and processes are codified within DoD Instruction
5000.02, Operation of the Defense Acquisition System,
which was issued in December 2008.
The acquisition framework associated with
DoD Instruction 5000.02 is the DAMS structure.
This framework, shown in Figure 2, consists of numerous
strategically placed milestones and major
program reviews to ensure proper programmatic
oversight.2 Each of the milestones has specific Figure 1. Defense Support System Organizational Structure
with
46
Directed Energy
RDT&E, Acquisition, and
Warfare Management
criteria that must be satisfied before a program is
allowed to further proceed along the DAMS. The
program’s Milestone Decision Authority (MDA)
rests with the individual responsible for deciding
if the milestone criteria have been met and,
if so, for allowing the program to proceed to the
next phase of the acquisition process. Designation
of a program’s MDA depends on a program’s level
of research, development, test, and evaluation
(RDT&E) and procurement funding. For example,
an Acquisition Category (ACAT) I program is defined
as an eventual total expenditure for RDT&E
of more than $365 million in fiscal year (FY) 2000
constant dollars or, for procurement, of more than
$2.19 billion in FY 2000 constant dollars. In this
case, for an ACAT ID (“D” refers to the Defense
Acquisition Board (DAB)) the Under Secretary of
Defense for Acquisition, Technology and Logistics
(USD(AT&L)) is the MDA; for an ACAT IC (“C”
refers to Component or Service), the MDA is the
Head of the DoD Component or, if delegated, the
Component Acquisition Executive.3
In addition, civilian and military workforce
members within the DoD whose job responsibilities
are deemed acquisition-related find themselves
with a training requirement necessary to carry out
their acquisition-related job responsibilities. Specifically,
these workforce members are required to
gain acquisition training and education with the
passage of the Defense Acquisition Workforce Improvement
Act (DAWIA) signed into law in 1990.
The current certification process comprises three
levels covering 16 different career fields. Each of
these 16 career fields has a set of specific training,
education, and experience requirements that
must be met in order for an individual to achieve
Level 1, Level 2, or Level 3 certification. The Defense
Acquisition University (DAU) provides the
necessary training classes required for the certification.
DAU identifies “core-plus” training classes
and continuous learning modules for each level
of certification. The core-plus classes and modules
are not required for certification but are identified
as additional sources of information to assist individuals
in becoming more knowledgeable about
their career field beyond the minimum standards
required for certification. The most up-to-date certification
frameworks for all 16 career fields can be
found at the following DAU website: http://icatalog.
dau.mil/onlinecatalog/CareerLvl.aspx
Defense Acquisition Reform
The DoD acquisition environment is undergoing
continuous change. The issuance of DoD Instruction
5000.02 marked the opening salvo of what
has become seemingly constant updates, modifications,
and guidance impacting how DoD procures
weapon systems to meet warfighter
requirements.
In addition to DoD’s issuance of DoD Instruction
5000.02, the Government Accountability Office
published a stream of reports and findings that indicate
significant cost growth and schedule delays
in major defense acquisition programs. In 2009,
Secretary of Defense Robert M. Gates proclaimed
Figure 2. DoD Acquisition Framework
47
The Acquisition Challenge Associated
With Directed-Energy RDT&E
a new way of doing business within DoD when it
comes to weapon systems acquisition. Pressures are
building for every program to maintain cost and
schedule estimates while delivering the technical
requirements originally developed to support the
warfighter.
Moreover, there have been two major policy
issuances. As previously mentioned, the first was
DoD Instruction 5000.02 in December 2008. This
update of the rules and processes governing DoD
weapon systems acquisition primarily impacted
the early part of the DAMS framework. The problem
was that weapon system programs were failing
their initial operational test and evaluation phases
at alarming rates—many times traced to program
offices attempting to design weapon systems with
immature technology. Such failures were preventing
those programs from proceeding to a full-rate
production decision review and, more importantly,
causing a repeat of some of the DAMS framework,
which translated to increased costs and delayed
initial operational capability timelines.
DoD Instruction 5000.02 attempted to solve
this problem with three main emphases. First, a
mandatory requirement was inserted for competitive
prototyping prior to program initiation at
Milestone B. The intent was to ensure a competition
among contractors competing for a contract award.
The theory was that such a competition would reduce
technical risk, validate designs, improve cost
estimates, evaluate manufacturing processes, and
refine requirements. Reducing technical risks was
especially important because weapon system programs
were expected to demonstrate a technology
readiness level (TRL) of six—where the system/
subsystem model or prototype is demonstrated
in a relevant environment—by the time a program
reached Milestone B. TRLs are categorized
on a scale of 1 to 9. A TRL of 1 is the lowest level of
technology readiness, where scientific research begins
to be translated into applied R&D. A TRL of 9
is the highest level of technology readiness, where
the actual system is proven through successful mission
operations. A TRL of 6 represents a major step
up in a technology’s demonstrated readiness. Using
TRLs enables consistent comparisons of technical
maturity across different types of technologies, giving
program decision makers a common benchmark
to consider when assessing program risk.
Note that TRLs are meant to capture a level of technical
maturity, not the probability of occurrence
(i.e., the likelihood of attaining a required maturity
level) or the impact of not achieving a level of technical
maturity.4
The second emphasis was on a stricter adherence
to systems engineering processes and technical
reviews. Too often weapon system programs
were not closely following systems engineering
processes or avoiding due diligence when it came
to the definition of successful exit criteria for a
technical review. Consequently, all technical efforts
must be outlined in a program’s systems engineering
plan. The program manager will use the
eight technical management processes—ecision
with
48
Directed Energy
RDT&E, Acquisition, and
Warfare Management
analysis, technical planning, technical assessment,
requirements management, risk management, configuration
management, technical data management,
and interface management—to manage the
technical development of the system increments,
including the supporting or enabling systems.5
The program manager will use the eight technical
processes—stakeholders requirements definition,
requirements analysis, architectural design,
implementation, integration, verification, validation,
and transition—to design the system, subsystems,
and components, including the supporting
or enabling systems required to produce, support,
operate, or dispose of a system.6 Figure 3 provides
an overlay of the new DoD Instruction 5000.02
and Secretary of the Navy (SECNAV Instruction)
5000.2D (Implementation and Operation of the
Defense Acquisition System and the JCIDS), and
shows the timing of specific systems engineering
technical reviews as a program matures through
the DAMS.
The third emphasis was a more prominent role
of the MDA, starting with a mandatory requirement
that all weapon system programs seeking a full or
partial materiel solution must hold a Materiel Development
Decision chaired by the MDA. Thus, the
old Design Readiness Review was replaced with the
Post-Critical Design Review Assessment chaired by
the MDA. In short, the MDA was to become a more
prominent figure in the oversight of a weapon system
program’s progress.
The second relatively recent major policy issuance
was the Weapon Systems Acquisition Reform
Act (WSARA) of 2009, implemented by
Directive-Type Memorandum (DTM) 09-027 in
December 2009. This DTM amended DoD Instruction
5000.02, the Defense Federal Acquisition
Regulation Supplement (DFARS), and associated
business practices within the Defense Acquisition
Guidebook (DAG). The WSARA implementation
brought about changes to policies and procedures
across 13 categories. Some of the WSARA changes
most relevant to the Navy directed-energy community
include:
• Analysis of alternatives study guidance
• Acquisition strategies to ensure competition
• Competitive prototyping
• Developmental test and evaluation
• Systems engineering
• Preliminary design reviews
• Critical cost growth
The Acquisition Impact
So why should the directed-energy community
care about these acquisition policy changes? Because
these policy changes impact the community’s
Figure 3. Systems Engineering Technical Review Timing
49
The Acquisition Challenge Associated
With Directed-Energy RDT&E
ability to develop, produce, and/or sustain directed-
energy weapon systems. The ultimate goal of
the directed-energy community is to deploy directed-
energy weapons to the fleet. Accordingly, regardless
of which phase or phases an organization
in the community supports, its actions are impacted
by the language in DoD Instruction 5000.02 and
the WSARA of 2009. The more scientists and engineers
in the organization are aware of governing
policy documents like DoD Instruction 5000.02,
the better their chances are of meeting DoD leadership’s
expectations in terms of cost, schedule, and
technical effectiveness.
Actions have shown that DoD senior leadership
has come to expect all weapon system programs
to adhere to the current acquisition-related
policy and guidance changes. As mentioned earlier,
major weapon system programs have recently been
canceled or restructured for not meeting DoD senior
leadership expectations—omething that
rarely occurred previously. In today’s environment,
technology alone will not carry the argument for a
program’s survivability. Directed-energy weapons
definitely carry the allure of a “Star Wars-like” capability,
but these same weapon systems will need
to show sustainable cost and schedule compliance
if they are to come to fruition. Resources are too
limited, and the warfighter has too many needs to
allow unsustainable weapon system programs to
continue. Therefore, everyone involved with the
development, procurement, and/or sustainment of
a directed-energy weapon system needs to have an
adequate understanding of the acquisition underpinnings
now governing DoD.
Summary
The proverbial “winds of change” are blowing
across the DoD acquisition landscape. The
management of major weapon systems dependent
upon cutting-edge technologies—uch as those of
directed energy—annot afford to conduct business
in a manner reminiscent of bygone days.
Everyone involved with the development, production,
or sustainment of a directed-energy weapon
system needs to understand the “rules of engagement”
laid down by the most recent DoD acquisition
policy guidance. Highly skilled scientists and
engineers typically already understand the need
for a structured systems engineering approach to
problem solving. Today, though, more than ever,
cost and schedule must be factored in as potential
tradespace to deliver the ultimate goal: a cost-effective,
directed-energy weapon system delivered in a
timely manner while meeting the warfighter’s requirements.
Scientists and engineers who adhere
to these recent acquisition changes will help their
organizations achieve this goal, thereby ensuring
that warfighters will be armed with the most technologically
superior weapons possible.
References
1. Congressional Research Service Report 7-5700, 10 July 2009, p. 3.
2. Ibid., p. 8.
3. DoD Instruction 5000.02, 8 December 2008, p. 33.
4. Defense Acquisition Guidebook, 5 May 2010, paragraph 10.5.2.2.
5. Ibid., paragraph 4.2.3.1.
6. Ibid., paragraph 4.2.3.2.
50
Directed Energy
Technology, Modeling, and Assessment
The Basics of Electric Weapons and
Pulsed-Power Technologies
By Stuart Moran
What Are Electric Weapons?
Most conventional weapons rely on chemical energy (explosives) as their destruction
mechanism, either to explode on target, like bombs, or to create kinetic energy, like
a bullet. Electric weapons are different. Electric weapons use stored electrical energy,
rather than explosives, to attack or destroy the target. Electric weapons generally fall into
two categories: directed-energy weapons (DEWs) and electromagnetic (EM) launchers.
DEWs send energy, instead of matter, toward a target, and can be separated into three
types: laser weapons, particle-beam weapons, and high-power microwave (HPM) or radio-
frequency (RF) weapons. EM launchers use electrical energy to throw a mass at a
target, thus making them distinct from directed energy. There are also three types of EM
launchers: rail guns, coil guns, and induction drivers. All involve the use of strong magnetic
fields to push against projectiles. While electric guns are an electric weapon, they
are not a DEW.
High electrical powers and large energies are needed for all these weapons. Technologies
for storing and controlling electric power are needed and are commonly called
pulsed-power technologies. Electric guns are often associated with DEWs due to their
common reliance on pulsed-power technology. The types of electric weapons are shown
in Figure 1.
Figure 1. Types of Electric Weapons
51
The Basics of Electric Weapons and
Pulsed-Power Technologies
There are a number of powerful advantages of
electric weapons over conventional explosives:
• DEWs have a near-zero time of flight compared
to conventional ordnance, allowing
longer decision times and quicker reaction
times.
• Electric weapons have a large “magazine” capacity,
often limited only by the ability of the
power source to recharge the system. The firing
rate depends on how fast the system can
be recharged, which in turn, depends on the
available power source.
• The cost of engagement is greatly reduced.
With increasingly sophisticated conventional
weapons, the cost of practice rounds, such
as a missile, can be millions. For an electric
weapon, the cost per engagement is greatly
reduced, making the attack of small targets
(the asymmetric threat) less costly and training
much more affordable.
• There is the potential for variable lethality,
where the weapon effects can be controlled
or attenuated to provide a warning or nonlethal
effect. Otherwise, a full-power setting
can be used to destroy the target.
• Electric weapons have the benefit of increased
safety since less ordnance needs to
be stored. Logistics costs less, and underway
replenishment is easier since explosives are
reduced or eliminated.
• Electric weapons can be used in conjunction
with conventional weapons to heighten
overall combat system effectiveness, such
as knocking out electronics before engaging
with a kinetic weapon.
Historically, the key Navy scenario for using
directed-energy technologies has been closein
protection of naval vessels from antiship cruise
missiles, particularly in a littoral environment. The
ability of a DEW’s speed-of-light engagement is
particularly attractive under conditions of short
warning times from supersonic stealthy missiles.
However, increasingly difficult and problematic
threats from nonmilitary aircraft and surface ships,
countersurveillance platforms, fast patrol boats,
unmanned aerial vehicles (UAVs), and terrorist inflatable
boats or jet skis present different challenges.
The threat has shifted from small numbers of
expensive targets in open water to large numbers
of small and cheap targets among neutral forces.
The unique characteristics offered by DEWs,
when compared to traditional weapon systems, allow
them to be applied across a spectrum of threat
roles, particularly in friendly or neutral-rich regions
where precision pointing or less-than-lethal
capability is paramount. The potential for HPM to
counter electronics at levels below human effects
makes them ideal nonlethal weapons. Electromagnetically
launched projectiles allow longer range,
shorter flight times, reduced reliance on air strikes
and missiles, and safer storage and replenishment.
With military budgets being squeezed, the low cost
of directed-energy engagements, which often require
just a few gallons of fuel, cannot be overemphasized.
Instead of million-dollar missile shots,
electric weapons allow new tactics, warning shots,
and continual fire against large and small targets.
They also allow inexpensive practice and training
for improved readiness.
Pulsed Power for Electric
Weapons
A useful rule of thumb is that a stick of TNT
contains about a megajoule (MJ) of chemical energy,
and this amount is often needed to destroy
a military target. To destroy a target with an electric
weapon, the electrical energy must also be deposited
quickly. Surprisingly, a candy bar also has a
megajoule of chemical energy, but it is released very
slowly when we eat it. Many electric weapons require
peak powers of more than a gigawatt (GW) or
energies more than a megajoule. The time scales for
delivery range from milliseconds to nanoseconds.
As an example, delivering 1 MJ of energy in 10 μs
requires 100 GW of power, which is more than a
commercial power plant can produce. It is not practical
to build continuous power supplies to directly
drive most electric weapons. Consequently, pulsedpower
technologies are needed to store energy at
low power rates and release it quickly for weapon
use. A pulsed-power system takes electrical power
from a prime source (like a motor), stores it, and
transforms the power to meet specific user requirements.
The importance of a pulsed-power system is
often underappreciated. For most electric weapon
systems, the system size, weight, volume, and reliability
are dominated by the pulsed-power chain.
Pulsed-power components must be improved
along with the weapon technology to make electric
weapons systems practical. A block diagram of
a pulsed-power system is shown in Figure 2.
Electrical energy can be stored in many ways,
such as a battery (actually a chemical storage). A
car battery has about a megajoule of energy, but
it takes many seconds to drain it. A much faster
method of storing electrical energy is in a capacitor,
which can be discharged in milliseconds or faster.
Inductive methods store the energy in the magnetic
fields of a coil. This has the potential of achieving
higher energy density than capacitors, but
52
Directed Energy
Technology, Modeling, and Assessment
when the supporting systems are considered, the
technology becomes less attractive. Energy storage
for electric weapons can also be done with chemical
explosive energy, where an explosive force is
converted into electrical energy using techniques
such as flux compression. Energy can be stored in
the inertia of rotating machines and flywheels, but
the energy can be released only as fast as the flywheel
or motor can be stopped, usually in seconds.
In many cases, several stages of energy store are
used where each stage is faster than the last. Once
the energy is stored, it must be released quickly using
a high-power switch. There are many types of
switches. Perhaps the most common type for electric-
weapon applications has been the spark gap.
Many types of controlled spark gaps exist, including
pin-triggered, laser-triggered, field distortion,
and simple overvolted. To achieve high repetition
rates, flowing oil or gas can be used to flush the hot
spark products, or sealed gaps using special fast-recovery
gases, such as hydrogen, can be employed.
Other switches, such as vacuum tubes and solidstate
switches, can be used if they can handle the
voltages and currents needed. Solid-state technologies,
such as thyristers, have become very capable
in recent years. Once the energy is switched
out, there is usually some additional power conditioning,
where transformers or pulse-forming networks
are used to provide the desired pulse shape,
voltage, and current required for the weapon. For
rapid firing rates or continuous use, high average
input powers are needed.
All-Electric Ship
One of the major impediments to the development
of electric weapons systems for Navy ships
has been a lack of electrical prime power. Current
surface combatant designs employ up to 90 percent
of engine power mechanically dedicated solely to
propulsion. These designs are unable to provide
the tens to hundreds of megawatts (MW) of electrical
power capacity required for many electric
weapons. The solution is an electric-drive ship that
uses all the engine power to generate electricity, enabling
it to allocate power to weapons or propulsion
as needed. In recent years, the Navy has been
investigating cost-effective power-system options
to meet future platform requirements.
High-Power Microwave (HPM)
and RF Weapons
Microwave weapons are generally considered
to use frequencies above a gigahertz, whereas lower
frequencies are generally called RF weapons.
These weapons are more powerful than electronic
warfare systems and are designed to create extended
disruption or permanent damage. An HPM
weapon is considered to have a peak power of more
than 100 MW, or energies above 1 J. The energy can
enter a target through intended RF paths, such as
target antennas (front door), or unintended paths,
such as housing joints, cavities, and circuit wires
(back door). Pulses ranging from a few nanoseconds
to microseconds in duration can be sufficient
to reset computers, cause loss of stored data, or
Figure 2. Block Diagram of a Pulsed-Power System
53
The Basics of Electric Weapons and
Pulsed-Power Technologies
cause microprocessors to switch operating modes.
Nonlinear circuits and components can rectify signals
and absorb energy outside of their normal operating
parameters. Figure 3 illustrates some of the
vulnerability areas on a missile body.
RF or HPM devices can be divided into narrowband
or wideband systems, dependent upon
the employed pulse length. Narrowband systems
are similar to high-power radar pulses and produce
RF radiation with a very narrow bandwidth (frequency
coverage). The damage concept is to create
enough energy in a target to overheat or overload
electronic components. Wideband systems generally
produce very short pulses (nanoseconds) and
typically operate in lower frequency ranges. Wideband
systems produce much lower average powers
and rely on high-peak electric fields to produce reset
or arcing of digital components. Creating short
pulses—often only a few RF cycles long—generates
a very broad frequency output to take advantage
of a target’s weak point. But, it also means that the
energy is spread over many frequencies, so there
may be very little energy at a specific vulnerable
frequency. Vulnerability data is critical to estimate
the effectiveness of HPM weapons. Ultimately, air
breakdown will limit the amount of energy out of
an antenna to around 1 MW/cm2.
HPM devices can produce effects that range
from denying the use of electronic-based equipment
to disrupting, damaging, or destroying such
equipment. HPM weapon advantages include allweather
capability, low precision pointing requirements,
and effects persistence after the radiated
EM energy “beam” has been turned off. One major
advantage of HPM is that electronics are generally
more vulnerable to high fields and high energies
than humans. This provides the ability to attack
electronics without harming people, which makes
HPM an ideal choice for nonlethal applications.
Two major challenges of implementing HPM
technologies into an operational weapon systems
platform are:
1. Fratricide, or self-destruction, can be a problem
because of the large areas affected by the
sidelobes and near field of any meaningful
HPM weapon system. Therefore, when
attacking a target of interest with an HPM
weapon, there is a greater risk of disruption
to systems that were not intended to be targeted
but fell within the sphere of influence.
Host platforms, therefore, may need to undergo
interference hardening.
2. With regard to battle damage assessment,
kinetic weapons have the advantage of typically
leaving visual evidence. HPM weapon
systems do not leave large holes in a target
but create more subtle influences as a result
of attacking critical electronic components.
Consequently, it can be more difficult to ascertain
whether a target’s capabilities have
been sufficiently degraded or destroyed—and for how long—n determining whether
a mission was successful.
For HPM system development, a fundamental
challenge is the understanding of what it takes to
affect the target. Coupling mechanisms, where EM
energy enters and affects the target system, are extremely
complex. The vulnerability of components
is often vastly different if it is outside or inside a circuit
board or enclosure. Effects depend upon the interactions
with other components, connectors, and
nearby conductors. The effects on a component can
vary many orders of magnitude depending on frequency,
orientation, cracks and seams, protective
circuits, pulse energy, and duration. Research regarding
effects on missiles has shown large variations
not only between designs, but also between
different serial numbers due to assembly methods,
cable routing, and component variations. With
the increasing use of commercial equipment by
the military, such as computers and radios, effects
are difficult to predict due to constant design and
component changes. In general, electronics are getting
smaller and operating at lower voltages, making
them more sensitive to high fields. But smaller
components often have lower pickup areas, and the
proliferation of interfering signals has increased the
amount of shielding on modern electronics. When
Figure 3. HPM Coupling Paths on Missile Body
54
Directed Energy
Technology, Modeling, and Assessment
target systems are located inside structures or buildings,
it becomes even more difficult to predict. Efforts
to predict reflections and interference inside
complex structures become extremely complicated.
Accordingly, generic electronics kill using universal
waveforms is not likely. There continues to be a lot
of hype about what RF weapons can do, but the idea
that a backpack device can wipe out all electronics
in a city is no more realistic than a hand-held laser
cutting through a bank vault door.
High-Energy Lasers (HELs)
A laser generally produces a beam of coherent
light at a specific wavelength dependent on
the atomic structure of the lasing substance. Only
certain substances have the atomic properties appropriate
for producing laser light, and these are
often limited in power. Lasers are characterized
by the substance being lased (gas, liquid, or solid)
and the “pumping” process (light energy, electricity,
or chemical reaction). A resonant optical cavity
provides the means for aligning the energy in
the beam and extracting that energy. A military laser
system also includes beam processing or beampath
conditioning, beam pointing and control
and—or long-range applications—daptive optics
to compensate for the atmosphere.
Until recently, HELs have been driven by chemical
energy, so very little electrical power or pulsed
power was needed. Chemical lasers use the reactions
of gases or liquids to create the excited energy
states necessary for laser emission. Large chemical
lasers and beam directors have been developed by
the Navy in recent decades and have successfully
ruptured fuel tanks and downed supersonic missiles.
However, these lasers required high-velocity,
chemical-reaction chambers and emitted hazardous
gaseous by-products. They often operated at
wavelengths where the atmosphere absorbed much
of the energy. Absorption creates thermal blooming,
whereby absorbed energy in the air creates
a negative lens that defocuses the beam. Increasing
the power of the laser increases the energy absorbed
and worsens the problem. The Army and
Air Force are developing chemical lasers for airborne
applications, where atmospheric absorption
is less of a problem. Recent Navy interest in HELs
has concentrated on lasers that are electrically powered,
rather than chemically powered, and that operate
at shorter wavelengths to allow smaller optics
and more efficient propagation near the water.
Small semiconductor (or diode) lasers use current
flow through an electrical junction to excite
electrons and create laser light. These lasers are
very limited in power, so research has focused on
using large numbers of lasers assembled into a coherent
array. Semiconductor lasers also create efficient
light to excite or “pump” other types of lasers.
Solid-state lasers (SSLs) use crystalline materials
mixed (doped) with elements needed for proper
lasing. SSLs show strong promise for compact, medium-
power HEL weapon systems. Scaling these
systems up to megawatt levels creates extreme heat
in the crystal material, making it very difficult to
prevent internal damage. Forced cooling and the
heat capacity of large masses are under study.
Fiber lasers—hich use semiconductor diode
lasers to pump a flexible, doped crystalline fiber
(similar to a fiber-optic line)—ave demonstrated
high efficiency and relatively high power. The technology
is being used in the welding and cutting industries.
Methods of pumping large numbers of
fiber-optic lasers and combining them are being investigated.
An example is shown in Figure 4.
The free-electron laser (FEL) operates differently
from a conventional laser. An FEL uses a
high-voltage electron accelerator to push electrons
through a magnetic “wiggler” to create light radiation
across a tunable band of frequencies. The FEL
is extremely complex and large, but scaling to very
high powers may be possible. Perhaps the biggest
promise of the FEL is the ability to design the laser
at an ideal atmospheric propagation wavelength.
Significant technical hurdles remain in reaching
the status of a deployable FEL, in scaling the beam
to megawatt powers and in providing the necessary
engineering to turn a laboratory device into a weapon
system of reasonable size. For Navy application,
FELs will require improvements in areas of radiation
shielding, high vacuum, high-current photoinjectors,
and probably cryogenic cooling—ll of
which must be integrated into a ship’s basic design.
Fiber lasers and SSLs are the leading-candidate
Navy lasers for medium power, as FELs are
for high power. All are electrically driven and can
meet the requirement for shorter wavelength, capable
of transmitting at the “maritime window” of
approximately 1 μ.
HEL weapons’ advantages include a highly directional
and narrowly focused beam, providing:
• Minimal collateral damage
• Speed-of-light delivery
• Rapid retargeting
• Low cost of engagement
Disadvantages center on:
• Limited range due to atmospheric attenuation
• Weather limitations
• Low efficiency (often less than 10 percent)
• Need for eye protection
• Relatively large size and weight requirements
55
The Basics of Electric Weapons and
Pulsed-Power Technologies
Figure 4. Drawing of Laser Weapon System (LaWS)
Long dwell times (seconds) will be needed for
most targets. As with RF systems, there is a potential
nonlethal or variable lethality capability since the
energy can be easily defocused. A critical challenge
is the understanding of a laser beam’s propagation
through a maritime boundary layer environment,
where the sea and air interface creates turbulence
and moisture gradients. Measuring the atmosphere
and compensating for variations in real time may require
adaptive optics or “rubber mirrors” that can be
constantly adjusted to compensate for changes. Focusing
a small spot at long range will require high
beam quality and large optics, probably meter-size
mirrors that are very highly reflective and very clean.
HELs in the future are expected to be able to focus
energy to a spot size of much less than a meter
at ranges of kilometers. This will necessitate very
accurate target tracking systems, and precise stabilization
and beam-pointing systems, both of which
are difficult but should be feasible in the near term.
Real-time atmospheric measuring systems will be
needed for compensation techniques. Methods to
protect the sensitive optical system from salt spray
and corrosion will also be needed.
From a lethality perspective, three considerations
need to be better understood before a HEL
can be deemed a true weapon system:
1. Achievable spot size of beam on target at
range
2. Amount of coupling into the target material
3. Subsequent effects of the damage inflicted
For the more severe threats,
such as high-speed, antiship
cruise
missiles, HELs face the difficult
task of engaging maneuverable,
stealthy, inbound missiles. As
such, a better quantitative understanding
of the interactions
among a laser beam’s energy deposition,
target material, and
flight dynamics is needed.
Particle Beams
A particle-beam weapon is
a directed flow of atomic or subatomic
particles. These particles
can be neutral or electrically
charged. Neutral beams need to
be used outside the atmosphere
(in space), where charged particles
would repel and fly apart.
Charged-particle beams (CPBs)
are easier to make and are used
within the atmosphere, where
air molecules can constrain the
beam. A CPB weapon transmits matter—not just
EM waves—like lasers and microwave weapons.
The particles are near the speed of light and deposit
their kinetic energy deeply into any target material.
They have the potential to be highly destructive
weapons and are very difficult to shield against.
Charged particles are produced by applying a
strong electric field near a material that emits electrons.
These electrons then pass through accelerating
stages with high voltage gradients (often
megavolts), which increase the electron’s velocity.
As the electrons pass each stage, the velocity
increases until they approach the speed of light
(become relativistic), at which point they have substantial
energy to penetrate a target. The accelerating
systems can be linear, but a recirculating design
is more compact and can reuse stages. These systems
are basically high-current versions of scientific
particle accelerators.
Once the electron beam is produced, it must
propagate to the target. High-velocity electrons
will not go far before they collide with air molecules
and lose energy. The fact that air molecules
struck by the beam are heated and moved out of
the way for a short period of time creates a rarified
“hole” in the atmosphere through which a second
pulse can travel farther. In this manner, a fast series
of pulses can “hole-bore” to the target, each pulse
going farther than the last. The final pulse must
have enough energy to damage the target. The deceleration
of electrons in the atmosphere causes
56
Directed Energy
Technology, Modeling, and Assessment
Bremsstrahlung radiation in the forward direction
toward the target, creating gamma rays that, in
turn, create X-rays and RF radiation.a These effects
can cause electronic upset and “soft-kill” mechanisms
even if the beam slightly misses the target.
The beam of electrons is typically a few centimeters
in diameter. When a beam strikes a target,
the energy is deposited deep in the material (the
collision cross section is small because of the relativistic
speeds) in microseconds (much faster than a
laser), creating thermal shock that is very difficult to
shield against. For an explosive target, there is also
the possibility of causing a deflagration or low-order
burn, disrupting the normal warhead mechanism.
Scientists studying CPB weapons made significant
technical advancements in the 1980s, but
the weapons are still far from being practical. A
CPB weapon is technically very challenging and
expensive to build. Studies project that the volume
requirements necessary for a CPB system
could be on the order of a 5-inch gun system. Advantages
of a CPB weapon include rapid penetration,
a deep magazine, all-weather capability, and
soft-kill mechanisms for a near miss. Problems include
complexity, size, limited range, and the need
to demonstrate compact accelerators and propagation
mechanisms.
Electromagnetic (EM) Launchers
A number of technology concepts to launch
projectiles exist using electrical energy. These systems
rely on large currents in conductors, creating
strong magnetic fields that drive a projectile. The
velocity of a normal powder gun projectile is limited
by the expansion speed of the explosive powder,
and present military guns are reaching that limit.
With an electric gun, the fields can push projectiles
much faster, providing longer ranges and increased
kinetic energies. The simplest version is an EM rail
gun, shown in Figure 5.
In any conducting loop, the generated magnetic
field tries to expand the loop. If everything is held
in position, the only movable item is the conducting
projectile, which moves down the rails in an attempt
to expand the loop. Since megajouoles of projectile
energy are needed for EM rail guns, energy storage
Figure 5. Electromagnetic (EM) Rail Gun Concept
57
The Basics of Electric Weapons and
Pulsed-Power Technologies
mechanisms that can store about 100 MJ are needed,
along with the ability to discharge the energy in
milliseconds. To generate useful forces, millions of
amps of current are needed—a major challenge and
significant loss mechanism. Large capacitor banks
with very high-current switches are required. Spark
gap switches have historically been the only option,
but new high-current solid-state switches are now
becoming available. Capacitor energy densities, too,
have improved an order of magnitude in the last few
decades. Rotating machines have also been considered
because they are smaller than equivalent capacitor
banks, but extracting the energy quickly,
without tearing the machine apart, has been problematic.
The launch energy of various projectiles is
shown in Figure 6.
A rail gun is probably the most compact form
of electric launcher. However, it requires direct
electrical contact between the projectile and barrel
rails, creating the potential for arcing, melting, and
erosion. Coil guns use a series of sequentially fired
coils around a “barrel” to push the projectile in
stages. This does not require direct electrical contact,
so it avoids rail erosion but requires a series of
fast timed switches and more space. Linear induction
motors are basically unrolled electric motors
and have been used on electric trains and roller
coasters, typically with magnetic levitating systems
to avoid contact erosion. This concept is being developed
by the Navy for launching aircraft. The
energy to launch an aircraft is similar to a largecaliber
projectile—ore weight but less speed. The
slower speeds are more suitable for rotating machines
since the launch times are seconds rather
than microseconds.1 Electrothermal guns and electrothermal-
chemical (ETC) guns use a combination
of electricity and chemicals. Electrical energy
is used to initiate chemical reactions that can produce
lightweight driving gases, like steam, or allow
more energetic propellants that are difficult to ignite
in a conventional fashion.
Some advantages of electrically driven projectiles
include:
• Higher projectile velocity (over conventional
explosives)
• Very long range (>100 miles) with lower cost
than missiles
• Time-critical delivery (because of shorter
time of flight)
• Safer projectile stowage (minimal explosives)
• Potentially adjustable velocity levels, for better
accuracy and controllable damage
The potential of having nonexplosive rounds
and magazines is very attractive for the Navy. For
long-range, large-caliber EM projectiles, the kinetic
energy from the projectile velocity is greater than
the chemical explosive energy in a conventional
round traveling much slower. Therefore, damage
can be equivalent even without explosives. System
size and lifetime are still behind conventional systems,
but getting close.
Outlook
Challenges remain for many electric weapon
concepts. These weapon systems appear promising
to meet the increasingly important asymmetric
threats with low-cost precision rounds. They
also can be employed across the energy spectrum
for nonlethal targeting. Electric weapon systems
will, in many cases, continue to supplement existing
kinetic weapon systems in the near term. Despite
technology challenges, directed-energy and
electric weapons hold great promise in offering the
future warfighter unique combat capabilities not
currently available.
Endnote
a. Bremsstrahlung—a type of radiation emitted when high-energy
electrons are decelerated. (German for braking radiation)
Reference
1. Shope, S. et al., Long-Range Naval Fire Support with a Coilgun,
Sandia Report 2001-3832, February 2002.
58
Directed Energy
Technology, Modeling, and Assessment
Solid Modeling of Directed-Energy Systems
By Joseph F. Sharrow
Not long ago, around the mid-1980s, development of most new mechanical systems—
such as automobiles, consumer products, and military devices—was performed
manually on a drafting table or drawing board, much like the present-day version shown
in Figure 1. These tables and boards performed a necessary function, but they offered
little assistance other than for drawing lines. Engineers used them to prepare layouts, or
two-dimensional sketches of what they were designing. They then would take these layouts
to a draftsman, who would create drawings of each part in the device. The drawings
would subsequently be sent to a manufacturing facility.
This layout and drawing preparation process typically would need to be repeated
multiple times because mistakes would be made, or design issues would be discovered
late in the process. Similarly, the manufacturing process would sometimes require multiple
iterations as well because of the inherent limitations in designing three-dimensional
(3-D) devices on two-dimensional boards. This less-than-ideal process made it
difficult to design and manufacture even mundane products and frequently resulted in
things that just didn’t work. With the emergence of early computerization, numerical
analyses of more complex systems began to be performed. These analyses were conducted
to ensure that the systems worked in the real world. For example, engineers might
conduct a structural analysis of the forces in a loaded dump-truck bed to make sure that
the frame wouldn’t bend and fail. Because of the difficulty in performing these analyses,
they would often require a specially trained group of structural engineers, expensive
software, and large mainframe computers, limiting their use to only the largest, most
well-funded companies or organizations.
Emergence of Computer-Aided Design (CAD)
and Solid Modeling
With the availability of smaller scale computers and more economical software in
the mid-to-late 1980s, CAD was born, initiating a period of rapid improvement in the
design process. This was driven, in part, by the introduction of software packages such
as AutoCAD. Initially, these software packages only attempted to automate drawing
lines by making wireframe (stick-figure) versions on the computer of what previously
had been made by hand on the drafting board. This reduced the difficulty in making
changes in the development process, but it still limited the engineer’s pallet to a two-dimensional
space. What was really needed was a 3-D method of design. Solid modeling
59
Solid Modeling of Directed-Energy Systems
addressed this need beginning in the late 1980s to
early 1990s.
Solid modeling is analogous to taking blocks of
clay and cutting and forming them into the shape
of a solid part on a computer. These 3-D parts are
then put together in an assembly, more accurately
representing real-world devices. Though originally
used only in a limited way for specialized applications
in the aircraft and automobile industries,
it wasn’t until the 1990s that solid modeling experienced
widespread availability and mainstream
acceptance due to software packages such as Pro/
ENGINEER. Figure 2 summarizes how Pro/ENGINEER
and other similar packages fit into the development
of new products. The general flow of the
process moves from left to right.
Initially, nearly all 3-D solid modeling packages
required significant computing and graphics
display power, necessitating the use of large graphics
workstations running the UNIX operating system.
Rapid advances in computing and graphics
power have since enabled nearly all packages to
run efficiently on personal computers (PCs) and
laptops, bringing solid modeling and analysis capability
into the mainstream.
Figure 1. Drawing Board
Figure 2. Solid Modeling in the Development Process
60
Directed Energy
Technology, Modeling, and Assessment
Solid Modeling of
Directed-Energy Systems
Engineers working in the Directed Energy
Division at the Naval Surface Warfare Center,
Dahlgren Division (NSWCDD), use solid modeling
to develop hardware for nearly all of its programs.
Both Pro/ENGINEER and SolidWorks are
used extensively to develop new products in virtual
3-D space. Additionally, the structural simulation
package within Pro/ENGINEER is used to determine
stresses and natural frequencies of parts and
assemblies. Consequently, these packages have enabled
a single mechanical engineer in the Directed
Energy Division and a draftsman in the Engagement
Systems Department at Dahlgren to perform
the design and analysis work that would have required
an entire group of engineers and draftsmen
just a few years ago. Today, collaboration among
many organizations using similar packages has become
commonplace. Insofar as solid modeling has
become an indispensable tool for development and
collaboration, its successful implementation requires
proper training and experience before engineers
can use it effectively, just as medical surgeons
require training in the use of advanced robotic surgical
devices before they can be used effectively.
Thus, while these high-tech modeling systems not
only have reduced the number of personnel needed
for design and development, they have enabled
the Navy to get significantly more bang for its buck
while supporting warfighting needs. An example of
how solid modeling is currently being used is discussed
below.
Navy Laser Weapon System
(LaWS) Beam Director
The Directed Energy Warfare Office (DEWO)
and Directed Energy Division at Dahlgren are currently
developing the Navy LaWS for the Naval Sea
Systems Command’s Directed Energy and Electric
Weapon Systems (DE&EWS) Program Office (PMS
405). The program’s goal is to take advantage of currently
available industrial laser technology and incorporate
it into a future naval weapon system. As
part of the development process, major subsystems
have been integrated with a Kineto Tracking Mount
(KTM) into a LaWS beam director. The KTM/beam
director was modeled and analyzed using Pro/ENGINEER.
Ultimately, the resulting LaWS will be
installed on Navy ships on the Close-In Weapon
System (CIWS) gun mount. During field testing in
June 2009 at the Naval Air Warfare Center, China
Lake, California, the prototype KTM/beam director
successfully destroyed five unmanned aerial vehicles
(UAVs). The actual beam director used in the
China Lake testing is shown in Figure 3; the Pro/
ENGINEER assembly model used for development
is shown in Figure 4.
The LaWS effort took advantage of many aspects
of solid modeling including collaboration,
structural and modal analysis, and manufacturing
drawing creation. The project required development
of new, unique hardware, as well as the
integration of electronic models from commercial
vendors. The KTM model was provided by L-3
Brashear and was originally designed using Pro/
ENGINEER. The beam-directing telescope model
was provided by RC Optical Systems, Incorporated,
and was originally made in SolidWorks.
These models were combined with many new optical
and structural components developed by the
Directed Energy Division into a single, comprehensive
assembly model. This model was instrumental
in understanding the interaction of the
many components, and its use increased accuracy
and precision that would have been impossible
with old-fashioned two-dimensional development
processes. Figure 5 shows a cross section
through the main portion of the beam director,
revealing the complexity of the many parts and
subassemblies required for such a device. In addition
to modeling the mechanical components, the
actual laser beams were also included to better understand
their path through the various mirrors
and optical devices in the beam director, and to
better highlight any interference they might have
with structural components within the KTM or
telescope.
Numerous analyses were performed to make
sure that everything worked the way it was intended.
One major analysis addressed the telescope
mount. To ensure that the beams were stable at
range, the mount had to be extremely stiff. The best
way to ensure this was to perform a structural analysis
using the structural simulation package within
Pro/ENGINEER. Figure 6 shows the results of that
analysis: a displacement plot in which different colors
represent how much the telescope will move
when the KTM rotates at its maximum speed. The
large cylindrical object simulates the mass of the
telescope. The minimum amount of displacement
is indicated by blue, and the maximum is shown
in red. This analysis verified that the movement of
the telescope, relative to the optical components
within the optics breadboard, was acceptable and
should perform well at the range specified by the
program office.
After modeling and analysis were completed,
manufacturing drawings of custom parts were created
by the Engagement Systems Department to be
61
Solid Modeling of Directed-Energy Systems
Figure 3. LaWS Beam Director
Figure 4. LaWS Beam Director Assembly Model
62
Directed Energy
Technology, Modeling, and Assessment
Figure 5. LaWS Beam Director Cutaway
Figure 6. Displacement Plot
63
Solid Modeling of Directed-Energy Systems
sent to manufacturing facilities, such as machine
shops. One example is shown in Figure 7, which
shows the first sheet of the multisheet drawing
needed to manufacture the large plates that support
the telescope from the center platform of the
KTM. One of these plates is also shown in the displacement
plot in Figure 6.
Even though it would be possible for one person
to do all of the modeling, analyses, and drawings for
a particular program, a more efficient process takes
advantage of using the best skills available by collaborating
with other experts. Collaboration enables
assembly, part, and drawing files to be sent
electronically, eliminating the need for collocating
personnel. Drawings for the LaWS program, for instance,
were made using noncollocated personnel
across base at NSWCDD. They could just as easily
have been made using personnel from across the
country.
The LaWS program exemplifies how the Directed
Energy Division uses solid modeling to
enhance the quality and effectiveness of Navy directed-
energy capabilities. As a result, warfighters
will be better armed with more effective weapons
and capabilities for future naval conflicts.
Acknowledgment
The author would like to acknowledge the
valuable contributions of the Engagement Systems
Department’s drafting group in support of
numerous DEWO and Directed Energy Division
programs.
Figure 7. Manufacturing Drawing
64
Directed Energy
Technology, Modeling, and Assessment
A Fundamental Key to Next-Generation
Directed-Energy Systems
By Directed Energy Division, Electromagnetic and Sensor Systems Department
Imagine an explosive ordnance disposal (EOD) unit on a routine scouting patrol
deep in the notorious “Triangle of Death” south of Baghdad, where Marines, Sailors,
and Soldiers frequently find themselves exposed to improvised explosive devices (IEDs).
Fortunately, this newly outfitted unit is equipped with the latest unmanned, mobile, remote-
controlled, radio frequency (RF) transmitter used as a directed-energy weapon
(DEW). The integrated system provides comprehensive IED prediction, detection, prevention,
and neutralization capabilities. Lightweight, pocket-sized transmitters carried
by each warfighter constantly communicate sensor intelligence, key vital signs, critical
conditions, and location telemetry to a geostationary satellite (GEOSAT). It intercepts,
collects, and retransmits intelligence and situational awareness data simultaneously to
any command post in the world and to each member of the unit on patrol. Highly efficient,
miniature, switch-mode, RF amplifiers with high-power density (small size and
weight with high-power output) enable these visions of future capabilities as their systems’
transmitter backbone.
To civilians, the miniaturization of modern wireless (electromagnetic) devices is
considered a mere convenience or luxury, i.e., Blackberries, mobile phones, and highspeed
wireless network connections. To the next-generation warfighter, miniaturized,
wireless, directed-energy (DE) systems open the door to the realization of a whole new
set of effective and efficient wireless modalities. And while the capabilities mentioned
in the above scenario are not yet available to warfighters, researchers believe they have
uncovered the key to next-generation DE systems leading to the miniaturization of
DE devices.
Next-Generation DE System Requirements
At the Naval Surface Warfare Center, Dahlgren Division (NSWCDD), key system
requirements for effective next-generation DE systems are being researched and developed
for applications to counter IEDs, to detect explosively formed penetrators (EFPs),
to neutralize explosives, and to predict threat locations. Next-generation DE systems
must yield a high probability of mission success and be inherently safe to operate. By
design, they must minimize or eliminate the risk of hostile attack or collateral damage
especially during screening missions. Considering the DEW example above, practical
65
A Fundamental Key to Next-Generation
Directed-Energy Systems
next-generation DE systems must be physically
characterized by:
• Low mass (weight)
• Small size (volume)
• High-power output with respect to size or
high-power density
• High efficiency for extended mission use
• Minimized prime power and cooling support
• Portability
• Mobility
• Configurability
They must also ensure a high probability of mission
effectiveness. The DEW must be easily transportable
and agile, adapting to the immediate, local
military mission requirements in various warfighting
environments. Additionally, DE systems must
be mechanically robust and able to withstand the
shock and vibration of combat missions in rough
and rugged environments. The key requirement—
efficiency—fundamentally facilitates all required
characteristics, including mass and size.
Moving Beyond Requirements
Scientists at NSWCDD, sponsored by the Office
of Naval Research (ONR), are researching and
developing key system requirements for effective
next-generation DE systems to counter IEDs, to
detect EFPs, to neutralize explosives, and to predict
threat locations.
Researchers at NSWCDD are leading the way
toward realizing small, lightweight, RF transmitters
using high-power, solid-state, switch-mode
amplifiers, theoretically 100 percent efficient. These
practical switch-mode amplifier realizations are
at least 1/100 the volume and weight of any commercially
available linear solid-state amplifier of
comparable power output. The challenges included
assessing what type of active amplifier device
and operation would provide the greatest power
density (power output per unit volume and mass)
with its necessary auxiliary systems, such as prime
power generation and cooling of waste heat. Such
a device also needed to provide sufficient output
power based on required standoff range and IED
system-coupling efficiency while also maintaining
a manageably-sized, easily transportable system.
Researchers initially considered tube-based systems,
but large, heavy, direct-current (DC) power
supplies are required, and typically 40 percent of
the input power is dissipated in heat, which negates
any possibility of miniaturization.
Upon a practical review of amplifier-class operations
and suitable active amplifier devices, however,
research pointed to contemporary switch-mode
080102-N-1132M-006 SHEIK SA’ID, Iraq (2 January 2008) U.S. Army Soldiers attached to 3rd Squadron, 2nd
Cavalry Regiment patrol and search for weapons or Improvised Explosive Devices (IEDs) during a clearing
mission. (U.S. Navy photo by Mass Communication Specialist 1st Class Sean Mulligan/Released)
66
Directed Energy
Technology, Modeling, and Assessment
amplifier schemes (e.g., Class-E and Class-F) using
solid-state technology—such as the high-electron
mobility transistor (HEMT)—as satisfying
the high-power density and abusive mechanical
requirements for expected worst-case transportation
and operation in a rugged environment. To
significantly impact reduction of size and weight,
practical, high-efficiency thresholds were defined
for next-generation DE systems at 90 percent and
greater. The key technology enabler to realize amplifier
high efficiency in high-power amplifiers
up to 60 kW was found in exploiting contemporary
switch-mode amplifier architecture with efficient
power combining. Particularly, switch-mode
schemes in Class-E and Class-F operation as solid-
state, active-hybrid planar topology designs
were found to be necessary and sufficient for DE
applications. These analyses led to a novel, Class‑E
RF switch-mode amplifier design. A Class-E RF
switch-mode amplifier can theoretically operate
at 100-percent efficiency. For every input watt
supplied, an RF output watt is produced. The conductors
and dielectric substrate of the hybrid planar
load network and the commercial off-the-shelf
(COTS) transistor all exhibit some small degree of
power loss, suggesting an estimated practically realized
efficiency of 90 percent.
Moreover, the amplifier under research consisted
of a novel microwave load network operating
with high-power output at ultrahigh frequency
(UHF). This research led to the state of the art in
Class-E designs leading by hundreds of watts, several
hundred megahertz in frequency, and roughly 10
percentage points in efficiency. A common, solidstate,
high-power amplifier design technique sums
the phase and amplitude of smaller amplifier units
to the large values required for DE systems. A practical
hardware limitation exists that limits the theoretically
infinite number of fixed RF output power
units to a finite number. Approximately 60‑kW
RF output power sets the boundary as the largest
hardware realization. By applying spatial power
combining in the propagating medium, phasedarray
antennas can be employed with constructive
wave interference in air that would allow sufficient
RF power densities on target, based on the number
of elements in the array. This technique eliminates
the traditional hardware necessary to power combine
the smaller power-amplifier elements, realizing
a much simplified DE system with enhanced
power density in the transmitter, and reduced mass
and volume.
The key to ultrahigh efficiency in a switchmode
amplifier, such as Class-E or Class-F, is found
in zero-voltage switching (ZVS). Here, the load
network is not only designed to be resonant at and
around a particular desired switching frequency, it
must simultaneously act to force the voltage across
the switch to be zero when current flows and when
it switches off; hence, theory suggests that no power
is dissipated because the product of current
through, and voltage across, the switch is zero.
It is this aspect of the design that makes the job
of switch-mode amplifier realization difficult. Of
course, in practice, a small voltage exists for a very
short time during the switching action, resulting
in a small amount of input power being dissipated
in heat. This theoretical description also assumes
that all components are ideal (i.e., no impedance
to current flow exists in the switch when turned
on). All realistic switches exhibit finite impedance
when turned on, which does dissipate some wasted
energy, but again, this is very small in modern
HEMT devices using the ZVS technique.
Class-E switch-mode amplifier theory development
began in the United States during the
1960s, with details published in 1975, although
some earlier reports were published in Russia.
Lumped element electrical components (RF choke
inductors and metal film capacitors) were initially
used in lower frequency (3 to 30 MHz) prototypes.
As engineers attempted higher frequency
designs in the very high frequency (VHF) range,
solid-state transistor switch parasitic intrinsic and
packaging elements found inside the transistor began
to be used as some of the key components necessary
for ZVS. These parasitic elements included
stray capacitance caused by differences of potential
between parts inside the transistor and inductance
caused by bond wire length that is used to
connect the transistor to accessible terminals in its
packaging. At microwave frequencies, these parasitic
elements become sensitive, invoking unintended
significant changes to load networks
designed to operate with the transistors. Intrinsic
elements include drain-to-source breakdown voltage
capability and peak current capability. As the
need for higher frequency operation and higher
power increased, constraints of key transistor parameters
became difficult to produce in traditional
silicon technology:
• High instantaneous transient (peak) current
capability through the transistor
• Moderate breakdown potential across the
transistor
• Low output capacitance
Only within the past few years have transistor
manufacturers produced COTS transistors that
meet the required capabilities necessary to operate
in switch mode for microwave frequencies and
67
A Fundamental Key to Next-Generation
Directed-Energy Systems
081107-N-1120L-072 RAMADI, Iraq (7 November 2008) Joint EOD Rapid Response Vehicles (JERRVs) assigned to Naval Mobile
Construction Battalion (NMCB) 7’s convoy security element are secured following an escort mission from a forward operating
base. The Cougar-type JERRVs are employed by coalition forces for escort and logistics missions, and to protect personnel from
IEDs. NMCB 7 is deployed to U.S. Forces Central Command to provide contingency construction support to coalition forces in support
of Operations Enduring Freedom and Iraqi Freedom. (U.S. Navy photo by Mass Communication Specialist 2nd Class Michael B.
Lavender/Released)
high-power output. Selection is still somewhat limited
for designers.
New transistor technology known as gallium
nitride (GaN) HEMTs—using state-of-theart
manufacturing processes with GaN on silicon
carbide materials—now facilitates Class-E highpower
amplifier (100-W) designs at ultrahigh frequencies.
The design process for switch-mode
amplifiers is radically different than linear amplifiers,
so engineers have tended to continue using linear
amplifier design techniques due to familiarity,
rather than advance to the switch-mode designs.
Today, the Class-E and Class-F unit power output
(greater than 100 W) capability and upper frequency
limitation is based on a lack of available HEMTs
with the necessary parameter capabilities.
Most recently, transistor manufacturers have
limited their investment in the Class-E amplifier solid-
state switch market due to no commercial market
mandate. An assortment of presently available
HEMTs provides a low-power capability in terms of
1- to 10-W output power for Class-E amplifiers in
the cell phone market. The need remains to continue
advancing in commercially manufactured HEMTs
with key capabilities necessary to realize larger unit
power output, hundreds of watts to a thousand
watts, for practical implementation in DE systems.
Possible Multiple Applications
Directed-Energy Weapon Systems
Expanding on the vision of the next-generation
DEW system mentioned at the beginning of
this article, further imagine that EOD scouts detect
a laser fluorescence signature of C4 high explosive
and chlorine outgasses in the vicinity of an
abandoned vehicle 2-km north of their current position.
An electronic support measure (ESM) team
on board an approaching clearing vehicle initiates
RF jamming and electromagnetic surveillance procedures.
Electronic specialists also scan the area
with ground-surface differential thermography—
particularly to detect possible buried IEDs and
EFPs or their tiny command wires, crush wires, or
pressure plates—while clearing a pathway to the
abandoned roadside vehicle.
Directed
68
Directed Energy
Technology, Modeling, and Assessment
Upon arrival at a 500-m safe distance, the EOD
specialists command the RF transmitter’s robotic
platform, also equipped with sensitive gamma-ray
planar and computed tomography (CT) imaging
to navigate toward and around the vehicle, interrogating
every possible hiding place. It discloses
an IED in the fuel tank. The specialist lifts the
transmitter arming safety and commands the remote
transmitter to radiate a prescribed dose of
RF energy directed at a carefully chosen component
of the vehicle-borne IED (VBIED) system.
Without entering the vehicle, the advanced
screening system detects and defuses the deadly
IED buried within the rusty, metal vehicle chassis.
Within minutes, the suspected VBIED threat
is entirely neutralized, with absolutely no wounded
warfighters or casualties.
Mobile Ad-Hoc Wireless Network (MANET)
Beyond IED detection and neutralization,
imagine an expeditionary unit on patrol, with each
member equipped with an RF transceiver about
the size and weight of a cigarette pack with an ultrahigh-
efficient switch-mode amplifier. The miniature
transceiver constantly communicates sensor
intelligence, key vital signs, critical conditions,
and location telemetry to a GEOSAT. This small
switch-mode amplifier has the needed output
power to reach an altitude of 35786 km, where the
GEOSAT intercepts, collects, and retransmits this
intelligence and situational awareness data to any
command post in the world and to each member
of the unit on patrol simultaneously. The expeditionary
unit, spread out over a wide area with large
interspacing, shares the situational awareness and
intelligence data of each other at the speed of light.
Thus, near real-time, worldwide communications
with ubiquitous secure access from the battlefield
is possible in a multiple-input, multiple-output
(MIMO) architecture. The same system could provide
a soldier-to-soldier MANET.
Next-generation switch-mode RF amplifier
designs could also optimize payload weight and
volume on board new communication satellites
while supplying higher power density and making
efficient use of the solar power supply budget.
Improved switch-mode amplifier power output,
when combined with enhanced antenna design,
would minimize Earth-station antenna size requirements.
The recently launched satellite shown
at left demonstrates an example of the latest antenna
technology.
Looking Forward
Miniaturizing next-generation DE systems
opens up a whole new world of applications to support
warfighters in ways unimaginable just a few
years ago. Reduction of transmitter mass and volume,
accompanied with high efficiency, creates a
welcome trickle-down effect. Low profile, small,
lightweight DE systems means:
• Less vulnerability to attack
• Greater mobility and maneuverability
• Simplified logistics with less fuel-supply demands
• Less impact on the environment
Clandestine operations, too, could be executed
with greater ease and simplified logistics support.
In the case of MIMO MANETs, miniaturized
high-power density transmitters could further expand
capabilities for the warfighter, enabling them
to carry high-power transmitters to communicate
with satellites or other supporting platforms. The
Pictured here is the National Aeronautics and Space Administration
/ National Oceanic and Atmospheric Administration (NASA/
NOAA) Geostationary Operational Environmental Satellite-P
(GOES-P) launching from Cape Canaveral Air Force Station,
Florida, aboard a Delta IV rocket procured by Boeing Launch
Services on 4 March 2010. Built by Boeing Space and Intelligence
Systems, GOES-P will provide NOAA and NASA scientists
with data to support weather, solar, and space operations,
and will enable future science improvements in weather prediction
and remote sensing. Additionally, GOES-P will provide data
on global climate changes and capability for search and rescue.
69
A Fundamental Key to Next-Generation
Directed-Energy Systems
satellite industry itself could benefit from miniaturized
switch-mode amplifiers with much higher
power density microwave transmitters, resulting
in reduced payload mass and volume; this also reduces
Earth-station antenna gain and size requirements.
Conclusion
NSWCDD is meeting the demanding requirements
of next-generation DE systems with Class‑E
RF transmitter switch-mode amplifiers designed to
operate at ultrahigh efficiency, greater than 90 percent.
Having discovered the key to next-generation
DE systems, researchers at NSWCDD are focusing
on the urgent need to counter IED systems with
small, lightweight, highly efficient transmitters that
use switch-mode amplifiers. Considering the multiplicity
of additional applications, all advancements
made in amplifier counter-IED applications
can be transferred to other applications in the future.
Accordingly, while the capabilities suggested
in this article might seem somewhat far-fetched, in
reality, they are realizable in the near term. It is projected
that NSWCDD will soon have its first 250‑W
UHF amplifier unit prototype ready. These units
will fit in the palm of an average-sized adult’s hand
and can be power combined to the level necessary
for platform and mission requirements. A fully realized,
fieldable DEW system prototype is possible
in just a few years.
70
Directed Energy
Technology, Modeling, and Assessment
Active Denial Array
By Randy Woods and Matthew Ketner
Active Denial Technology (ADT)—which encompasses the use of millimeter waves
as a directed-energy, nonlethal, counterpersonnel weapon—has the potential to provide
an important new escalation-of-force capability to U.S. operating forces. ADT projects
a focused beam of 95-GHz millimeter waves to induce an intolerable heating sensation
on an adversary’s skin, repelling the individual with minimal risk of injury. More than a
decade of research has established the biological and behavioral effects of ADT for large
spot size systems, such as Active Denial System 1 (Figure 1). While the effects of this
large spot size system have been successfully established, the technology that produces
those effects has the potential to progress in a number of ways, particularly with the development
of smaller, lighter, and lower-cost systems.
One research effort focuses on the development of smaller, lighter, and lower cost
ADT demonstrators that produce commensurate “ADS-effects,” with effective spot size
and power densities on target. In support of this effort, the Joint Non-Lethal Weapons
Program (JNLWP) sponsored the Naval Surface Warfare Center, Dahlgren Division
(NSWCDD) to develop a “smart target system,” which measures the millimeter-wave
beam using fast-response, 95-GHz diode detectors. NSWCDD subsequently developed
and tested the W-Band Beam Diagnostic Array to characterize the system’s beam with a
temporal resolution of 30 Hz and a high spatial resolution of 1 inch.
The current method of measuring the 95-GHz beam is to use carbon-loaded Teflon
(CLT) to produce an average power beam image. This method works as the CLT is exposed
to the system’s beam. The material heats, over a period of seconds, proportional to
the magnitude of the radio frequency (RF) field, resulting in an image as shown in Figure
2. After the exposure, the specific heat capacity of the CLT can be used with the temperature
increase in the CLT to provide an indication of the total energy deposited in the
material. This method produces a good representation of the average RF field; however,
any peak variations in the beam are averaged out.
To allow for high temporal-resolution measurements of the 95-GHz beam, a highdensity,
95-GHz diode-detector array was commissioned by the Joint Non-Lethal Weapons
Directorate (JNLWD), and was designed and built by NSWCDD, with support from
Millitech, Inc. The array consists of a center 11 × 11 matrix (shown in Figure 3) with four
removable arms that can be attached (shown in Figure 4), resulting in a measurement
area of approximately 1 × 1 m.
71
Active Denial Array
Figure 2. CLT Representation of Small, 95-GHz Spot
Each element’s profile consists of the individual
horn antenna from the array, an attenuator,
a detector, and a SubMiniature version A (SMA)
connection to the digitizer circuitry.
This configuration allows for the
power received from the antenna
to be attenuated and converted to a
direct current (DC) output capable
of being measured by an analog-todigital
converter. The machined antenna
elements provide a uniform
effective area for each element, allowing
field strength (W/cm2) to be
converted into power received (W
or dBm). The aperture antennas
also provide an impedance match
between free space and the waveguide
system. A cross-sectional
view of the array element is shown
in Figure 5, followed by a signal
flow diagram shown in Figure 6.
The basic principle of operation
behind the array is that the derivative
of the diode detector’s power
vs. output voltage curve is very
repeatable between detector elements. Therefore,
when the detector elements arrived at NSWCDD,
each detector element was paired with a variable
Figure 1. Active Denial System 1
72
Directed Energy
Technology, Modeling, and Assessment
attenuator and calibrated as a single unit. The calibration
was accomplished by inserting a known
input power of +5 dBm into the input of the attenuator
and setting the DC output voltage at a predetermined
millivolt (mV) output. This allowed the
detector’s individual offset voltages to be removed
and caused the detectors to behave in a repeatable
manner. The attenuator is able to be adjusted by
varying the depth that the aluminum nickel card is
inserted into the section of waveguide.
The final section of the electrical system converts
the DC voltage output from the detectors to
a digital signal to send back to the operator station.
For this, it was determined that a 16-bit digitizer
would be required to enable measuring the
microvolts output by the detectors on the low end
of their range, while still allowing the digitizer to
measure the full output voltage of 1.8 V for highinput
powers. Also, due to the proximity of the
operator to the array and overall system flexibility,
it was determined that Ethernet communications
would provide a sufficient means of reading
the system data.
To display the data to the operator, a two-dimensional
array is populated and displayed for the
user (shown in Figure 7). This allows values to be
Figure 3. Main Array Face
Figure 4. Full W-Band Array
Figure 5. Cross-Sectional View of Array Element
73
Active Denial Array
read directly from the display corresponding to the
watts per centimeter squared (W/cm2) present at
the array face. Data also is recorded so that it can be
viewed later in a player application, such as a video
file, or it can be viewed in a spreadsheet application,
frame by frame. The data shown in Figure 7
is representative of small-source testing performed
recently and very clearly shows the beam profile.
Conclusion
NSWCDD engineers successfully met the
W‑band array’s design goals of providing a high
temporal-resolution image of 95-GHz beams. The
system has been tested against two active denial
systems, providing good agreement with the
currently accepted methods, as well as valuable
information regarding the system’s beam characteristics.
These accomplishments will allow future
system development to take advantage of this better
understanding to possibly reduce system size
and increase the effective range. A better understanding
of the 95-GHz beam helps to facilitate
future ADT development for this much-needed,
nonlethal escalation-of-force capability for U.S.
warfighters, homeland defenders, and law enforcement
personnel.
Figure 7. Array’s Operator Interface Showing a Small Spot Source
Figure 6. Signal Flow Diagram
74
Directed Energy
Technology, Modeling, and Assessment
Directed Energy in the Military Environment
By LT Leedjia Svec, Jeremy Beer, and Dave Freeman
75
Directed Energy in the Military Environment
The military operates in the land, air, and maritime
environments. In each of these environments,
lasers and laser devices are increasingly being seen
and used in a variety of ways. Accordingly, the
military must protect itself and civilians from the
potentially dangerous effects of lasers and other directed-
energy devices.
Lasers are being used on the ground to determine
the intentions of people who approach
checkpoints and to dissuade aircraft from entering
restricted airspace. Laser weapons are also being
developed for use in the maritime environment.
With the use of lasers comes the requirement for
eye protection. The eye is particularly sensitive to
lasers and its anatomy includes optical components
that amplify the power of incoming light. Consequently,
the potential for injury or blinding is great.
Naval Medical Research Unit – San Antonio
(NAMRU-SA) is poised to lead the way in researching
and testing laser glare devices and laser
eye protection. The mission of the NAMRU-SA
is to conduct medical, dental, and directed-energy
biomedical research, which focuses on ways to
enhance the health, safety, performance, and operational
readiness of Navy and Marine Corps personnel,
and addresses their emergent medical and
dental problems in routine and combat operations.
NAMRU-SA was officially commissioned on
6 May 2009 and is a subordinate command under
the Naval Medical Research Center (NMRC) in Silver
Spring, Maryland, reporting to Navy Medicine
Support Command (NMSC) in Jacksonville, Florida.
NAMRU-SA consolidates the Naval Health
Research Center Detachment Directed Energy
Bioeffects Laboratory, the Naval Institute for Dental
and Biomedical Research in Great Lakes, and
the NMRC Combat Casualty Care research function.
As part of the Base Realignment and Closure
(BRAC) 2005, NAMRU-SA has moved to Fort
Sam Houston. Two new buildings that have been
constructed are the Battlefield Health and Trauma
Research Institute and the Tri Service Research
Laboratory. A conceptual drawing of the NAMRUSA
Tri-Service Research Laboratory (to house directed-
energy research) is shown in Figure 1.
Many factors must be considered when lasers
operate in military environments. On the ground,
lasers offer a greater likelihood of close contact exposure.
In aviation and maritime environments,
the mobility of lasers is limited to permanent fixtures
on aircraft or ships, so target acquisition can
be much more complicated. Often ignored, but just
as important and common to all environments, are
the psychological factors that need to be explored.
These factors include clarifying intentions, communications,
and effectiveness. In certain situations,
Figure 1. Naval Medical Research Unit – San Antonio Tri-Service Research Laboratory at
Fort Sam Houston, San Antonio, Texas (artist’s concept)
76
Directed Energy
Technology, Modeling, and Assessment
sometimes lasers are coupled with other modalities,
such as auditory instructions.
On the ground, laser exposure has been shown
to interfere with driving vehicles, making color
judgments, and target shooting. In aviation, lasers
can interfere with pilot vision, causing afterimages,
glare, or temporary ocular injury, with attendant
effects on navigation and control. In the maritime
environment, lights frequently are used to signal a
variety of messages, from direction (left, right, etc.)
to more complicated messages such as “man overboard.”
More prolific use of lasers underscores the
need for laser eye protection, a dynamic area of
research, which must respond to changing threat
wavelengths and changing environments. Figure 2
shows NAMRU-SA personnel executing an operational
field test at Kennedy Space Center, July 2009.
Recent studies undertaken by NAMRU-SA
have investigated the use of laser dazzlers on sailors
in small boats.a In these studies, participants
were exposed to the laser glare at different angles
and distances, in both day and night conditions.
Study protocols were approved in accordance with
the Institutional Review Board in compliance with
all applicable federal regulations governing the protection
of human subjects. Participants were given a
survey assessing their subjective response to the laser,
as well as a more objective visual eye chart. The
Figure 2. NAMRU-SA personnel execute operational field test at Kennedy Space Center, July 2009, in
which a nonlethal laser prototype is evaluated for power delivery (stability and beam propagation) at range
and human visual effectiveness aboard a maritime target.
77
Directed Energy in the Military Environment
results suggested that participants were
most affected by the laser at night when
they were looking straight at it (as opposed
to many degrees away) and at the closest
exposure distances. The most surprising
finding, however, was that some participants
reported being drawn to the laser
rather than away from it, especially at farther
distances. Participants remarked that
they couldn’t tell what the signal was, so
they would want to go closer to find out.
This illustrates that the assumption (by
some)—hat distant laser lights will deter
and repel innocent mariners—ight not
always be true. Further research is needed
to verify this finding, however, before employing
laser glare devices in the maritime
environment. Figure 3 shows NAMRUSA
personnel executing operational field
tests, which were conducted at Cheatham
Annex, Virginia, and Panama City, Florida,
in 2008–009.
These studies also brought the factor
of communication to light. Participants
remarked that “green is not a threatening
color,” and some thought “it could be
a signal for help.” Many felt curious about
the “blinking light” used in the study and
would go closer or try to contact the vessel
to determine the intent of the message.
Green lasers are used because they
are more visually salient; however, they
may not be as psychologically salient.
Participants remarked that if the signal
were paired with another signal, such as
an auditory one, then the message of “warning” or
“do not come closer” might be clearer.
Lastly, these studies brought to light the matter
of effectiveness. Laser glare devices are used to
stop or alter the behavior of the recipient, but one
study yielded mixed results. At close distances, participants
noticed the signal, felt affected by it, and
reported that their behavior changed in the manner
desired by the person pointing the laser. But
at greater distances, behavior might not change.
Thus, these findings need to be replicated in different
maritime scenarios in order to be truly useful in
developing laser glare devices. This particular study
Figure 3. A compact hand-held laser is evaluated for effectiveness in
maritime defense against small-boat attacks.
was encouraging regarding the effectiveness and visual
usefulness of glare devices, but it brought up
new questions about their psychological impact on
behavior. Resolving these questions must be an integral
goal of technical research and development
studies to determine the operational effectiveness of
directed-energy devices, not just for the maritime
environment, but for all military environments.
Endnote
a. Results and technical reports are available upon request from
the corresponding author or from the NAMRU-SA Public Affairs
Officer.
78
Directed Energy
High-Power Microwave
Directed Energy Using High-Power
Microwave Technology
By Jacob Walker and Matthew McQuage
The Directed Energy Warfare Office (DEWO) and Directed Energy Division at the
Naval Surface Warfare Center, Dahlgren Division (NSWCDD) merge past research
and data with continuous innovation in the field of high-power microwave(s) (HPM)
to address the critical need for nonlethal, nonkinetic weapons. HPM weapons can be
described as nonkinetic devices that radiate electromagnetic energy in the radio frequency
(RF) or microwave spectrum. They are designed to disrupt, deny, degrade,
damage, or destroy targets. In essence, this is achieved when high-power electromagnetic
waves propagate through air and interdict targets by traveling through the exterior
layers of structures and coupling energy to critical electronic components. Since
effectiveness against a wide range of targets is the goal, HPM has become a collective
term for various technologies: wave shapes, source frequencies, and the distribution of
varying signal bandwidths. It is the objective of HPM research and assessment, therefore,
to address targets for which no engagement option currently exists. NSWCDD is
working to identify optimal HPM mission platforms and move relevant technologies
into the field.
HPM Initiatives
NSWCDD has actively pursued HPM research since the advent of the field in the
1970s. Since then, scientists and engineers have conducted HPM research and development
in many areas, including hydrogen spark-gap switching, spiral generators, and
related technologies. More currently, the Directed Energy Division developed a variety
of high-power wideband RF systems based on pulsed power and Marx generators
(Figure 1). In addition to the extensive work accomplished in HPM and RF source development,
NSWCDD contributed substantially to the area of counter-HPM vulnerability
assessments. Researchers developed site assessment guides and threat brochures,
as well as a number of wideband RF sources, to determine the susceptibility of electronic
equipment to high-power RF interference. This latter effort involved assessing
and exploiting the weaknesses of specified electronic targets to various HPM and RF
threats. Data gleaned from these efforts was then used to support optimized prototypes
and system designs employing effects-based design methodology. NSWCDD utilized
these wideband RF sources to determine the susceptibility of a multitude of military
79
Directed Energy Using High-Power
Microwave Technology
Figure 1. Examples of NSWCDD Marx Generators
80
Directed Energy
High-Power Microwave
and electronic infrastructure equipment to highpower
RF interference.
HPM Counterattack
Operational Overview
Research in support of HPM-driven electronic
attack increased significantly as the demand
for nontraditional warfare emerged. Traditional
kinetic weapons often are of limited value in
peace-keeping missions, for example, as today’s
enemies frequently are embedded within civilian
populations and structures. This creates the
need for novel HPM technologies that minimize
the risk of collateral damage while effectively
neutralizing threats. Dahlgren researchers conduct
HPM system research and development—s
well as lethality and weapon effectiveness assessments—to address this need while developing
technologies against a wide variety of electronic
targets. These projects leverage NSWCDD’s assets,
including the Maginot’ Open Air Test Site
(MOATS), state-of-the-art RF diagnostics, and
modeling and simulation tools to identify applications
and platforms in which HPM technologies
can be employed. Figure 2 shows a computer
model of the MOATS facility and a modeling and
Figure 2. Modeling and Simulation Depicting (a) NSWCDD Test Facility and (b) Simulation of Radiated RF
(a)
(b)
81
Directed Energy Using High-Power
Microwave Technology
simulation graphic depicting the RF emitted by
an HPM dipole antenna.
Potential platforms for HPM integration include:
man-portable, aerial, vehicle, and vesselmounted
systems. These platforms all provide
unique methods for delivery of HPM sources. For
example, aerial delivery—which, in many ways, is
the most challenging due to size and weight constraints—
can increase the effective range of these
systems and can engage multiple targets at close
range without endangering personnel. Likewise,
vehicles and vessel-mounted HPM systems provide
a way for law enforcement and the military to
stop vehicles in chase scenarios almost as soon as
they begin. The goal of all of these projects is to
provide military forces with the ability to employ
nonkinetic, electronic strike technologies against
an adversary’s electronics.
The DEWO and Directed Energy Division are
uniquely positioned to provide numerous capabilities
for in-house development while engaging
with the private sector to test and provide feedback
on HPM systems developed externally. In
the past decade, NSWCDD has evaluated several
HPM systems at Dahlgren to determine their effectiveness
against various electronic targets while
maintaining the Office of the Secretary of Defense’s
Tri-Service RF Directed Energy Weapon (DEW)
Database. This database contains all effects data
collected from directed-energy tests performed
within the U.S. Air Force, Army, and Navy.
Conclusion
NSWCDD continues to pioneer HPM source
development and lethality and integration studies,
leading to the demonstration and delivery of
prototype capabilities. It also is committed to researching
and developing critical subsystems for
HPM delivery. By leveraging numerous target assets
and sophisticated diagnostic equipment—in
conjunction with MOATS—NSWCDD has positioned
itself at the forefront of HPM electronic
attack, leading the way in the development and delivery
of these capabilities to the warfighter.
Acknowledgment
Nancy Muncie, Bowhead, contributed to this
article.
82
Directed Energy
High-Energy Laser
Laser Counter Rocket, Artillery,
and Mortar (C-RAM) Efforts
By Michael Libeau
Mortars and rockets are common weapons confronting U.S. troops abroad. Insurgents
fire the inexpensive projectiles into populated areas, intending to kill or injure
service members and to inflict physical damage. While kinetic solutions like guns and
missile interceptors are used to counter rockets and mortars, laser counter rocket, artillery,
and mortar (C-RAM) systems present a promising solution to counter these challenging
threats in the near future.
Scientists and engineers at the Naval Surface Warfare Center, Dahlgren Division
(NSWCDD) have been researching, developing, testing, and evaluating laser C-RAM
systems through collaboration, modeling and simulation, and experimentation. The
Joint Technology Office (JTO) and the Directed Energy and Electric Weapons Program
Office (PMS 405) sponsored the first year of these initiatives in 2007. Consecutive and
current work has been sponsored by the Office of Naval Research (ONR) Expeditionary
Maneuver Warfare and Combating Terrorism S&T Department.
Background
In preparation for the development of a laser C-RAM system, an understanding
of the vulnerability of rockets and mortars to laser energy was crucial. Engineers from
NSWCDD and the U.S. Army Space and Missile Defense Command (SMDC) collaborated
on laser C-RAM efforts. Engineers analyzed the RAM threat and examined a
variety of targets, accessing RAM vulnerabilities to laser energy by utilizing theoretical,
numerical, and experimental work. They then developed theoretical models that
captured the physics of the laser-induced failures of targets containing high explosives
(HE). Additionally, NSWCDD engineers enhanced lethality simulations using a tool
called the Effectiveness Toolbox to model engagements of RAM targets with laser energy.
Figure 1 shows a screen capture from the Effectiveness Toolbox.
The resulting simulations included results from a laser atmospheric propagation
model and a thermal model to determine the effect of the laser energy on the target. The
simulations also incorporated target trajectories necessary for modeling the changing
laser conditions on the target resulting from the engagement of a ballistic target. Subsequent
to modeling these effects, live testing was performed. Figure 2 shows the lasing
and destruction of a RAM target during live testing.
83
Laser Counter Rocket, Artillery,
and Mortar (C-RAM) Efforts
Figure 2. Explosive Target is Destroyed with NSWCDD’s Fiber Lasers
Figure 1. Screen Capture from the Effectiveness Toolbox Showing the Laser Engagement of a Mortar Target
84
Directed Energy
High-Energy Laser
Figure 3. Laser Power Spatial Variation from a C-RAM Test
NSWCDD engineers conducted two large experimental
tests to determine the vulnerability of
HE targets to laser energy using NSWCDD’s High-
Energy Fiber lasers. The first test was conducted
jointly with SMDC. During these two tests, over
40 RAM targets were destroyed under different laser
conditions, producing significant information
on laser lethality. Researchers measured the failure
times of multiple targets for different laser powers,
spot sizes, incidence angles, and aimpoints. The experimental
data yielded by the tests increased engineers’
understanding of the vulnerability of targets
containing energetic materials. This data was then
used to benchmark predictive models.
Future tests are planned with additional HE
targets to further the knowledge of RAM vulnerability.
These tests are controlled and conducted
carefully to ensure that good data is obtained. Accurate
measurements of laser power on the target
and the resulting target failure times must be made
during the tests. To that end, NSWCDD engineers
leverage Division-wide expertise in lasers and optics
with its long history of explosives testing to
achieve meaningful test results. NSWCDD personnel
have been instrumental in improving techniques
to measure the spatial profile of laser power
on a target. The spatial distribution of laser power
on a target is critical to understanding the target’s
failure. Figure 3 shows a laser beam’s spatial power
distribution measured during a test.
Ongoing Laser C-RAM Initiatives
Recent advances in fiber lasers have increased
the power outputs of these rugged, solid-state devices.
Both government and contractor efforts are
examining the application of commercial off-theshelf
(COTS) lasers and other electric lasers for
application into advanced weapon systems. The
Navy’s Laser Weapon System (LaWS) Program, for
example, is examining a laser system built around
efficient fiber lasers. This is significant because a
high-energy fiber laser system offers two critical
advantages over gun and missile interceptor CRAM
systems. First, the laser has a great depth of
magazine since it requires only electricity for operation.
Consequently, unlike a gun system, which
has a limited supply of ammunition, a laser system
is limited only by its supply of electrical energy.
Second, a laser system offers a cost per kill
that is significantly lower than alternative systems
because only electricity is being expended instead
of gun ammunition or a costly missile interceptor.
This low cost per kill also better matches the low
cost of the RAM target being engaged.
High-Energy Fiber Laser C-RAM systems will
provide significant advantages in defeating the
RAM threat while augmenting existing C-RAM
solutions. More importantly, laser C-RAM systems
will help protect members of the armed forces
from the inexpensive, yet often deadly threats
posed by rockets and mortars.
85
Laser Counter Rocket, Artillery,
and Mortar (C-RAM) Efforts
86
Directed Energy
Nonlethal Capabilities
Multifrequency Radio-Frequency (RF)
Vehicle Stopper
By Stephen A. Merryman
The widespread use of vehicle-borne improvised explosive devices (VBIEDs) in Iraq
and Afghanistan has resulted in large numbers of military and civilian personnel being
killed or injured. Consequently, the Joint Non-Lethal Weapons Directorate’s (JNLWD)
top priority is to identify, investigate, and develop technologies and capabilities to nonlethally
stop both vehicles and vessels outside of minimum “keep-out ranges” (i.e., ranges
where the rules of engagement would dictate the use of lethal force) and to mitigate
the blast effects from a VBIED.
One of these technologies is the multifrequency Radio-Frequency (RF) Vehicle
Stopper (RFVS), a high-power microwave (HPM) weapon under development at the
Naval Surface Warfare Center, Dahlgren Division (NSWCDD). A prototype RFVS system,
designed to meet the mission criteria for fixed-checkpoint protection and compound
protection, is slated for completion in FY13. Science and technology (S&T) work
continues in parallel to the prototype system’s construction to broaden its applicability
to include convoy protection and the establishment of a quick safe zone. This article describes
the 4-year research effort that resulted in the specification of the RFVS system
design. Figure 1 shows an illustration of a candidate RFVS platform with the system set
up for fixed-checkpoint protection.
The RFVS system uses high-power magnetron tubes to generate intense RF pulses
that interfere with a vehicle’s electronics, rendering it temporarily inoperable. The engine
cannot be restarted while the RF is on but is readily restarted once the RF is turned
off. Thus, the RFVS system allows for the maintenance of a safe keep-out zone in situations
that might otherwise require the use of lethal force. The defined measure of success
for this system is a demonstrated, effective capability against more than 80% of the candidate
target-vehicle-class list, which includes passenger cars and large vehicles.
As a nonlethal capability, the effects to the target vehicle are short term and almost
always reversible, so that the vehicle is not stranded, which would burden the warfighter
with the task of its removal. Moreover, as with all directed-energy weapons, the RFVS
system delivers energy at the speed of light. In contrast with other nonlethal vehicle
stopping concepts and systems, however, RFVS does not need to be pre-emplaced and
has a limitless magazine.
87
Multifrequency Radio-Frequency (RF)
Vehicle Stopper
Background
Using HPM or RF energy to stop an automobile
engine is not a new concept; it has been under
investigation for some time in private, academic,
and military sectors. To that end, the RFVS program
leveraged as much historic work as possible
while collaborating with academic and military
laboratories and while aggressively pursuing contacts
in the automobile industry to gain knowledge
of vehicle electronic design and function.
In 2005, the JNLWD funded the then-Directed
Energy Technology Office (DETO) at NSWCDD
to perform an extensive reverberation chamber
test series to characterize the vulnerability of a representative
cross section of automobiles to a wide
range of HPM source frequencies.a The purposes
of the tests were twofold. First, the applicability
of the Army’s Ground Vehicle Stopper (GVS)
data set needed to be established for newer vehicles,
and second, a thorough, source-technology
independent assessment of vehicle vulnerabilities
needed to be performed. The rationale behind the
latter was to establish vehicle vulnerabilities without
inadvertently biasing the process. Only after
the full assessment was performed would factors
such as concept of operations (CONOPS) and system
requirements come into play. Figure 2 is a photograph
of reverberation chamber testing.
Over the past decade, a significant number of
private, academic, and military laboratories have
investigated the susceptibility of automobiles to
HPM energy. The range in approaches spans the
gamut from isolated component testing, through
direct injection and radiated testing of electronic
control units (ECUs), and continuing through full
vehicle radiated testing. Each of the different test
methods has its strengths and weaknesses. Testing
of isolated ECUs in controlled laboratory conditions
is arguably the best way to determine exactly
how a specific unit is responding to the RF. However,
whether or not the identified susceptibilities
continue to hold true when the unit is in place in a
Figure 1. Illustration of Candidate RFVS System Setup for Checkpoint Protection
88
Directed Energy
Nonlethal Capabilities
vehicle, or whether the results apply to other vehicles’
ECUs, remains a significant question that limits
the applicability of the results.
Full vehicle testing and failure analysis of the
ECU can be a daunting task. That said, full vehicle
testing affords the advantage of ensuring that
the response is commensurate with expectations
of genuine engagements. The test approach one
chooses to take depends upon resources, test facility
availability, and most importantly, the objectives
of the program. For the RFVS program, the objectives
were to identify an HPM waveform that is
effective against a broad class of the candidate target
vehicles and to ensure that the identified waveform
could be generated with a source that can be
packaged in a footprint and cost amenable to military
users. To meet the program’s objectives, the
RFVS program chose to invest the majority of its
resources in full vehicle testing. While the focus of
the effects testing portion of the RFVS program has
remained on full vehicle testing, both time and resources
have been devoted to fostering and maintaining
connections with academia and the auto
industry. There is concerted effort to keep abreast
of the latest trends in automotive technology, to
ensure that the current RFVS system design will
continue to be effective against future vehicle designs,
and to leverage all research that might aid in
future RFVS designs.
System Operation
The majority of current HPM system concepts
employ a narrowband, single-frequency HPM
source. In contrast, RFVS utilizes multiple HPM
Figure 2. Vehicle on a Dynamometer in the NSWCDD Reverberation Chamber
89
Multifrequency Radio-Frequency (RF)
Vehicle Stopper
frequencies. The rationale for using multiple frequencies
is associated with increased system effectiveness.
Electromagnetic (EM) energy can be used
to disrupt or damage an electronic target. In order
for the energy to affect the electronics, however, it
must be able to reach a critical component(s) inside
the target. This involves a process referred to
as coupling. Different EM waveforms are more or
less effective against specific targets depending, in
part, on their frequency, as different frequencies
couple better or worse depending on varying target
geometries. To be specific, each piece of electronics
has specific resonance frequencies that most effectively
facilitate coupling energy to the target.
Unfortunately, these resonant frequencies can be
unique to each piece of equipment. Consequently,
a single-frequency waveform might be very effective
against one target, but less effective against another
target. Therefore, a system that utilizes either
a sweep of frequencies or multiple frequencies will
be more effective against a larger target set. This is
not a novel idea, but rather one that has been readily
acknowledged within the HPM community for
some time and fervently embraced by the RFVS
program. Current technology limitations prohibit
high-power-swept frequency sources as viable
options, leading to the idea of a multifrequency
source. The more frequencies that are used, the
more effective the system; however, a trade-off is
made with system size and cost as the number of
source frequencies is increased.
Brassboard System
After completion of the exhaustive vehicle effects
characterization testing in 2006, the RFVS
program identified the optimal number of frequencies
needed to meet mission requirements. It
then used this information in the design and construction
of the Brassboard System. The purpose in
constructing the Brassboard System was to demonstrate
the benefit of the multifrequency approach
and the ability to meet mission objectives with
specified power on target requirements. Construction
of the RFVS Brassboard System began in 2007
and was completed in 2008. The Brassboard System
was not constructed with specific system footprints
in mind. Thus, the antenna and conex used
are significantly larger than those in the prototype
design. The RFVS team collaborated with a Marine
Corps service representative identified by the
JNLWD to flesh out the specifics of the mock
checkpoint to be used in the RFVS Brassboard System
Demonstration. Figure 3 provides a diagram
of the checkpoint setup used in the RFVS Brassboard
Demonstration. Figure 4 provides photographs
of the RFVS Brassboard System.
Figure 3. Schematic of Checkpoint Setup
90
Directed Energy
Nonlethal Capabilities
Figure 4. Photograph of the RFVS Brassboard System and Demonstration Setup
Demonstration Test Setup
91
Multifrequency Radio-Frequency (RF)
Vehicle Stopper
The Brassboard System Demonstration was
conducted in Spring 2008. The Demonstration
was a success, and funding for the RFVS prototype
was consequently approved. To date, 42 passenger
vehicles (cars, pickup trucks, vans, and sport
utility vehicles (SUVs)) and 3 large trucks (dump
truck and tractors) have been tested as part of the
RFVS program.
Way Ahead
The JNLWD continues to work with the Directed
Energy Warfare Office (DEWO) toward the
development of a fieldable multifrequency RFVS
system. Once the capability is fully developed,
tested, and certified ready for operational use,
warfighters and civilians alike will benefit greatly.
Lives will no doubt be saved using the ability to
stop vehicles nonlethally and mitigate the blast effects
from VBIEDs.
Acknowledgment
Dr. Cynthia Ropiak (SAQ Consulting) contributed
to this article.
Endnote
a. The Directed Energy Technology Office (DETO) was renamed the
Directed Energy Warfare Office (DEWO) in August 2009. For reference,
see the charter for the DEWO, NSWCDD, 17 August 2009.
92
Directed Energy
Nonlethal Capabilities
High-Power Electrical Vehicle-Stopping Systems
By Jordan Chaparro and Melanie Everton
The military needs devices that can safely and reliably stop or arrest vehicles. The
primary concern is security at entry control points and vehicle check points similar to
the one shown in Figure 1. In such scenarios, it is desirable to be able to stop unauthorized
vehicles at predefined standoff ranges to protect personnel, equipment, and critical
infrastructure.
Both the military and civilian law enforcement agencies face similar issues with
chase scenarios, where concerns over bringing an offending vehicle to a stop without
killing or injuring innocent civilians, or causing collateral damage, often prolongs highspeed
pursuits. That said, currently employed nonlethal options for arresting vehicles
have significant logistical limitations and carry a high cost per use.
The Naval Surface Warfare Center, Dahlgren Division’s Directed Energy Warfare
Office (DEWO), under the sponsorship of the Joint Non-Lethal Weapons Directorate
(JNLWD), investigated compact systems designed to couple high-power electrical impulses
to a target vehicle to stop its engine. Such systems are highly portable, can operate
remotely, can be deployed quickly by a two-man team, and can engage hundreds of
targets before requiring any significant maintenance.
System Overview
Conceptually, electrical vehicle-stopping systems are fairly simple devices. The systems
use several stages of energy compression to take a low-peak power source—like a
battery pack—and create very intense, short-duration, oscillating electrical impulses. The
block diagram, shown in Figure 2, illustrates the principal components of such a system.
A high-energy density, 300-V lithium battery pack, similar to what might be found
in a hybrid vehicle, serves as the prime power source for the device. These batteries are
capable of driving the system for hundreds of engagements before requiring recharge.
The direct current bus from the batteries is stepped up to several kilovolts in order
to charge a capacitive voltage multiplier, such as a Marx Generator, Spiral Line Generator,
or Tesla Transformer. Once triggered, these generators charge a resonant circuit to
hundreds of kilovolts which, when switched, generate the desired oscillating waveform.
Coupling this electrical pulse to a target may be accomplished by direct electrode contact,
by radiating the waveform from a broadband antenna structure, or by a combination
of both methods.
93
High-Power Electrical Vehicle-Stopping Systems
Figure 1. An Azerbaijani Soldier Guarding Entry Control Point 1 at the Haditha Dam in Support of Operation Iraqi Freedom
Figure 2. System Block Diagram for Generic Electrical Vehicle-Stopping Systems
94
Directed Energy
Nonlethal Capabilities
The system is monitored and controlled by
an integrated system computer. A laptop computer,
remotely connected to the system controller
through either fiber optic or a wireless network,
can be used to arm the system. At this point, motion
detection sensors trigger the pulse train upon
the targeted vehicle. The laptop can also be used to
monitor the system’s status, change system parameters,
and receive data collected during the last engagement
event.
A conceptual rendering of how such a system
might look when in use is shown in Figure 3.
Traffic would be funneled with barriers to a single
lane. When not engaged, the system electrodes
would sit flush with the roadway unit, with an exposed
height of less than 3 inches. When required,
the electrodes could be released to make contact
with a vehicle’s undercarriage and deliver the electrical
impulses.
Comparison with Existing Systems
Tire spike systems are frequently employed but
do not limit the momentum, drive, or control of a
vehicle to an extent that could be useful in any type
of control or checkpoint scenario. Consequently,
while tire spike systems are primarily used in highspeed
pursuit applications, they are limited, in that
they cripple the target just enough to allow law enforcement
to force the vehicle to a stop.
Restraining nets are most comparable to electrical
vehicle stoppers with respect to their intended
application and desired effect. Restraining net
systems and electrical vehicle stoppers both completely
arrest vehicles, although by different means.
Restraining nets bind the front axle of the vehicle,
causing it to forcibly lose momentum and skid to
a stop. Thus, the vehicle operator loses the ability
to steer the vehicle, further resulting in a lower
potential for collateral damage. Electrical systems
stop the engine of the vehicle, leaving the operator
with control for the duration of the vehicle’s momentum.
Physical barrier structures can then be
employed to force an affected vehicle to stop in a
fairly short distance. Modern vehicles lose power
steering when the engine is cut off, such that the
maneuverability of the vehicle is limited enough to
Figure 3. Conceptual Rendering of an Employed Electric Vehicle Stopping System
95
High-Power Electrical Vehicle-Stopping Systems
allow normally nonrestrictive serpentines to be effective
at limiting roll-off distances.
One key logistical advantage of electrical vehicle
stoppers, compared to restraining nets, is the
average cost per engagement. Restraining net systems
are one-time use devices that cost several
thousand dollars each. Electrical systems initially
cost tens of thousands of dollars but can perform
thousands of stops within the expected lifetime of
the device. Also, there is no requirement to physically
reset or reload an electrical system, as with
restraining nets. The maintenance required for
electrical systems involves the occasional replacement
of electrode arms and the inspection of the
system connections and pressure levels.
Operationally, both systems have limitations on
the types of targets that can be effectively stopped.
Restraining nets are limited by vehicle momentum,
which can be a product of high speeds or large
vehicles. Electrical systems are not limited by vehicle
size or speed, but they require additional support
from structures—such as serpentines or speed
bumps—to force the target to brake and dissipate
its momentum once the engine has been stopped.
Both devices typically cause damage to targeted,
stopped vehicles. Restraining nets almost always
cause tire damage. Less commonly, brake
lines, front axles, wheels, and transmissions also
might be damaged. Electrical systems typically
damage engine controllers, security modules, and
engine sensors. In addition, noncritical parts—
such as gauges, radios, and cabin fans—also might
be damaged. Moreover, moving affected targets is
much less of an issue with electrical stoppers than
vehicles stopped by net systems, which must first
have the net cut away and freed before the target is
moved to the side of the roadway.
System Refinement and
Look Forward
Previous attempts to field electrical vehiclestopping
systems have been hampered by limited
success rates on a large population of vehicles.
Many models of vehicles are easily affected by any
type of large injected current, while others are fairly
resistant. Through carefully designed and controlled
experiments, and logistical regression
modeling techniques, the DEWO team has been
able to determine key waveform attributes that
scale with stopping effectiveness rates on a representative
population of vehicles. Successful stop
rates exceeding 90 percent have been achieved on
a diverse vehicle test set by engineering system
resonators to enhance system performance The
DEWO team, through continued research, testing,
and evaluation, is continuing its work to increase
the reliability and effectiveness of these systems to
make them more compact and to improve their
functionality for future military and law enforcement
applications.
96
Directed Energy
Nonlethal Capabilities
Nonlethal Small-Vessel Stopping With
High-Power Microwave Technology
By Jacob Walker
97
Nonlethal Small-Vessel Stopping With
High-Power Microwave Technology
Figure 1. Depiction of a Small-Vessel Swarm Ready to Attack
The employment of small vessels to attack merchant
ships and other seafaring units has emerged
as a significant threat to international navigation
and safe operations on the high seas. Along with
swarm tactics, small vessels have been known to
carry improvised explosive devices, help smuggle
terrorists and weapons, and serve as attack
platforms on the water for larger weapons. While
kinetic solutions serve as the decisive option, alternative
solutions that employ nonlethal means are
being explored. A depiction of a swarm of small
vessels ready to attack is shown in Figure 1.
The Naval Surface Warfare Center, Dahlgren
Division’s (NSWCDD’s) Directed Energy Warfare
Office (DEWO) is evaluating directed-energy (DE)
concepts based on high-power microwave (HPM)
technology for nonlethal vessel-stopping applications.
Nonlethal weapons are defined by the Department
of Defense (DoD) as weapons that are
explicitly designed and primarily employed so as to
incapacitate personnel or materiel while minimizing
fatalities, permanent injury to personnel, and undesired
damage to property and the environment.1
Several methodologies exist for using nonlethal
means to stop small vessels. They include:
• Running-gear or prop entanglement systems
• Exhaust stack blockers
• A sea-anchor vessel-stopping system, which
casts a net across the bow of a vessel to impart
resistance
• Small-craft disablers, which insert a spear
into the hull and deploy a fin that drags in
the water, making steering impossible
Prop entanglement systems, exhaust stack
blockers, and sea-anchor systems are useful and effective,
but all are operationally difficult to deliver
when deployment methods rely on positioning
them in front of, or directly over, a vessel moving
98
Directed Energy
Nonlethal Capabilities
at high speeds. Small-craft disablers also are a formidable
vessel-stopping solution and may be easier
to deploy, but they cause permanent damage to
the vessel in question.
Under the direction of the Joint Non-Lethal
Weapons Directorate (JNLWD), the DEWO is in
the initial stages of a multiyear effort to evaluate
DE concepts for nonlethal vessel-stopping applications.
It is currently focusing on HPM technology.
This technology uses HPM sources to radiate radio
frequency (RF) pulses downrange to interfere with
motor-control electronics and significantly impede
or stop small-vessel motors with minimal collateral
damage. These RF pulses can be generated using
different technologies ranging from wideband LC
oscillators and microwave tubes (e.g., magnetrons,
klystrons, and backward wave oscillators) to emerging
solid-state technologies (e.g., nonlinear transmission
line and photo-conductive switching). An
outboard motor on a test stand is shown in Figure 2.
In comparison to kinetic weapons or other nonlethal
systems, HPM avoids gross physical destruction
to the vessel while, more importantly, providing
zero-to-low risk of human injury. HPM accomplishes
this at safe distances using speed of light delivery,
therefore making evasion difficult, if not impossible,
with the added benefit of scalable effects ranging
from disruption to damage. Despite its numerous
advantages, the use of HPM technology as a nonlethal
weapon presents challenges as well, including
a trade-off between system size and standoff range.
This is particularly important when considering the
use of HPM systems in different environments.
Upfront HPM source development costs represent
one of the biggest challenges. However,
long-term savings associated with HPM technology
can offset this challenge. For example, prop entanglement
systems might be deployed only once
before they are rendered useless. HPM sources
integrated onto a ship or other military vehicle
can be employed in potentially thousands of missions,
therefore resulting in a lower cost per single
use, bringing overall associated costs of the system
down significantly. Priorities for HPM nonlethal
weapons include developing a system effective
against different types of small vessels.
NSWCDD’s Directed Energy Division began
HPM susceptibility testing to determine the effectiveness
of HPM weapons against relevant outboard
engines. This involves testing small vessels in
Figure 2. Outboard Motor Test Stand
99
Nonlethal Small-Vessel Stopping With
High-Power Microwave Technology
a variety of environments, including reverberation
and anechoic chambers, and open-air testing. All
help identify different, effective waveform parameters
such as frequency, pulse width, rise time, and
required power or energy on target. They further
facilitate the identification of design specifications
necessary for an eventual HPM source. This source,
once developed, will then be integrated into one
of several potential platforms. Candidate concepts
of deployment include U.S. Coast Guard and naval
vessels in addition to unmanned surface or aerial
vessels. Another potential application might be
to supplement existing Coast Guard or Navy platforms
used for fast-boat interdiction with an HPM
vessel-stopping capability. A small-vessel test using
an HPM source is shown in Figure 3.
Developing solutions for the growing threat
that small vessels pose to navigation and safe operations
in the world’s oceans is one of JNLWD’s
top priorities. Using nonlethal HPM weapons to
stop vessels will provide the warfighter with a viable
option for swarm threat and fast-boat interdiction.
DEWO is working diligently to accelerate this
technology and provide a DE alternative to kinetic
weapons and fulfill this long overdue capability gap.
Figure 3. Small-Vessel Testing Using a High-Power Microwave Source
Reference
1. Department of Defense Dictionary of Military and Associated
Terms, Joint Publication 1-02, 12 April 2001 (as amended through
19 August 2009).
Directed Energy
Volume 7, Issue No. 4
We look forward as we provide enterprise-wide
technical and strategic leadership for the efficient
and effective development, acquisition, and fielding
of directed-energy systems for the warfighter.
Dale Sisson
Head, Electromagnetic and
Sensor Systems Department
NSWCDD, Dahlgren, Virginia
NSWCDD/MP-09/34
Statement A: Approved for public release; distribution is unlimited
Fallen Warriors
Here we honor those who died while serving their country
Volume 7, Issue No. 4